email Package Reference

Release 2.5
Barry Warsaw

March 21, 2003

barry@zope.com

Abstract

Theemail package provides classes and utilities to create, parse, generate, and modify email messages, con-
forming to all the relevant email and MIME related RFCs.

Contents
1 Introduction 1
2 email — An email and MIME handling package 2
2.1 Representinganemailmessage. i 3
Deprecated methods. e 8
2.2 Parsingemaill mesSsages i e e e 9
Parserclass AP e 9
Additional notes. 10
2.3 Generating MIME doCUMENES. i i 11
Deprecated methods. e 12
2.4 Creating email and MIME objects from scratch. L. 12
2.5 Internationalized headers. 14
2.6 Representing charactersets e e e 16
27 ENCOUEIS . . . o o 18
2.8 EXceptionClasses 19
2.9 Miscellaneous utilities. L e e e 19
2.0 Ierators. o o e e e e e e 21
2.11 Differences froremail v1 (uptoPython2.2.1). 22
2.12 Differences fronmimelib L 23
2.13 EXamples. . . .o e 24

1 Introduction

Theemail package provides classes and utilities to create, parse, generate, and modify email messages, conforming
to all the relevant email and MIME related RFCs.

This document describes the current version ofahmil package, which is available to Python programmers in a
number of ways. Python 2.2.2 and 2.3 come weithail version 2, while earlier versions of Python 2.2.x come with
email version 1. Python 2.1.x and earlier do not come with any version céttel package.

The email package is also available as a standalone distutils package, and is compatible with Python 2.1.3 and
beyond. Thus, if you're using Python 2.1.3 you can download the standalone package and install it itgour *
packages’ directory. The standalonemail package is available on tt@&ourceForgenimelib project

The documentation that follows was written for the Python project, so if you're reading this as part of the standalone
email package documentation, there are a few notes to be aware of:

e Deprecation and “version added” notes are relative to the Python version a feature was added or deprecated.
To find out what version of themail package a particular item was added, changed, or removed, refer to the
package'sNEWS' file.

e The code samples are written with Python 2.2 in mind. For Python 2.1.3, some adjustments are necessary. For
example, this code snippet;

if isinstance(s, str):
..

would need to be written this way in Python 2.1.3:

from types import StringType

..

if isinstance(s, StringType):
..

e If you're reading this documentation as part of the standakmail package, some of the internal links to
other sections of the Python standard library may not resolve.

2 email — An email and MIME handling package

New in version 2.2.

Theemail package is a library for managing email messages, including MIME and other RFC 2822-based message
documents. It subsumes most of the functionality in several older standard modules gag822s, mimetools

multifile , and other non-standard packages sudmiasecnt! . It is specificallynotdesigned to do any sending

of email messages to SMTP (RFC 2821) servers; that is the function efiti@ib module. Theemail package
attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such MIME-related RFCs as RFC
2045-RFC 2047, and RFC 2231.

The primary distinguishing feature of tkenail package is that it splits the parsing and generating of email messages

from the internalobject modelepresentation of email. Applications using #mail package deal primarily with

objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-arrange the contents,
etc. There is a separate parser and a separate generator which handles the transformation from flat text to the object
model, and then back to flat text again. There are also handy subclasses for some common MIME object types, and a
few miscellaneous utilities that help with such common tasks as extracting and parsing message field values, creating
RFC-compliant dates, etc.

The following sections describe the functionality of thmail package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is parsed

2 2 email — An email and MIME handling package

to produce the object structure of the email message, this structure is manipulated, and finally rendered back into flat
text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there, a
similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules thatdfie package provides, the exception
classes you might encounter while using #meail package, some auxiliary utilities, and a few examples. For users
of the oldermimelib package, or previous versions of temail package, a section on differences and porting is
provided.

See Also:

Modulesmtplib (section??):
SMTP protocol client

2.1 Representing an email message

The central class in themail package is thdlessage class; it is the base class for tleenail object model.
Message provides the core functionality for setting and querying header fields, and for accessing message bodies.

Conceptually, aMessage object consists oheadersand payloads Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or the
field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be a
single envelope header, also known aslméx-From header or thérom _ header. The payload is either a string in

the case of simple message objects or a lidfle§sage objects for MIME container documents (ergultipart/* and
message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface for
accessing both the headers and the payload. It provides convenience methods for generating a flat text representation
of the message object tree, for accessing commonly used header parameters, and for recursively walking over the
object tree.

Here are the methods of tivdessage class:

classMessage ()
The constructor takes no arguments.

as _string ([unixfrom])
Return the entire message flatten as a string. When optimirdtomis True , the envelope header is included
in the returned stringunixfromdefaults toFalse .

__str __()
Equivalent toas _string(unixfrom=True)

is _multipart ()
ReturnTrue if the message’s payload is a list of sMessage objects, otherwise returRalse . When
is _multipart() returns False, the payload should be a string object.

set _unixfrom (unixfrom)
Set the message’s envelope heademiafrom which should be a string.

get _unixfrom ()
Return the message’s envelope header. Defauliotee if the envelope header was never set.

attach (payload
Add the givenpayloadto the current payload, which must bione or a list of Message objects before the
call. After the call, the payload will always be a list Mfessage objects. If you want to set the payload to a
scalar object (e.g. a string), uset _payload() instead.

2.1 Representing an email message 3

get _payload ([i[, decodd])
Return a reference the current payload, which will be a lisfleésage objects whens _multipart() is
True , or a string whens _multipart() is False . If the payload is a list and you mutate the list object,
you modify the message’s payload in place.

With optional argumeni, get _payload() will return thei-th element of the payload, counting from zero, if
is _multipart() is True . An IndexError will be raised ifi is less than O or greater than or equal to the
number of items in the payload. If the payload is a string (8e._multipart() is False) andi is given, a
TypeError s raised.

Optionaldecodeis a flag indicating whether the payload should be decoded or not, accordingQortiesat-
Transfer-Encoding: header. Wheifrue and the message is not a multipart, the payload will be decoded if this
header’s value isqfuoted-printable "or ‘base64 ’. If some other encoding is used, Gbntent-Transfer-

Encoding: header is missing, or if the payload has bogus base64 data, the payload is returned as-is (undecoded).
If the message is a multipart and tbecodeflag is True , thenNone is returned. The default fatecodeis

False .

set _payload (payloac{, charsel])
Set the entire message object’s payloagddgload It is the client’s responsibility to ensure the payload invari-
ants. Optionatharsetsets the message’s default character setseee charset() for details.

Changed in version 2.2.2harsetargument added.

set _charset (charsej
Set the character set of the payload tbarset which can either be aCharset instance (see
email.Charset), astring naming a character setNwne. Ifitis a string, it will be converted to €harset
instance. Ictharsets None, thecharset parameter will be removed from ti@antent-Type: header. Anything
else will generate aypeError

The message will be assumed to be of tygea/* encoded withcharset.input _charset . It will be
converted tacharset.output _charset and encoded properly, if needed, when generating the plain text
representation of the message. MIME headgiisE-Version:, Content-Type:, Content-Transfer-Encoding:) will

be added as needed.

New in version 2.2.2.

get _charset ()
Return theCharset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note
that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also,
in dictionaries there is no guaranteed order to the keys return&eys() , but in aMessage object, headers are

always returned in the order they appeared in the original message, or were added to the message later. Any header
deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.
Note that in all cases, any envelope header present in the message is not included in the mapping interface.

_len __()
Return the total number of headers, including duplicates.

__contains __(namg
Return true if the message object has a field nanagde Matching is done case-insensitively amaimeshould
not include the trailing colon. Used for tire operator, e.g.:

if ‘'message-id’ in myMessage:
print 'Message-ID:’, myMessage['message-id’]

__getitem __(nam@
Return the value of the named header fieldmeshould not include the colon field separator. If the header is

4 2 email — An email and MIME handling package

missing,None is returned; &eyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field values
will be returned is undefined. Use thet _all() method to get the values of all the extant named headers.

__setitem __(name, va)
Add a header to the message with field namaeneand valueval. The field is appended to the end of the
message'’s existing fields.

Note that this doesot overwrite or delete any existing header with the same name. If you want to ensure that
the new header is the only one present in the message with fieldmemgzdelete the field first, e.g.:

del msg['subject’]
msg['subject’] = 'Python roolz!’

__delitem __(namg
Delete all occurrences of the field with namamefrom the message’s headers. No exception is raised if the
named field isn’t present in the headers.

has _key (nam¢
Return true if the message contains a header field naraee otherwise return false.

keys ()
Return a list of all the message’s header field names.

values ()
Return a list of all the message’s field values.

items ()
Return a list of 2-tuples containing all the message’s field headers and values.

get (name[, failobj])
Return the value of the named header field. This is identicaligetitem __() except that optiondhilobj
is returned if the named header is missing (defaultddoe).

Here are some additional useful methods:

get _all (name[, failobj])
Return a list of all the values for the field namedme If there are no such named headers in the message,
failobj is returned (defaults thlone).

add _header (_name, value, **_param3y

Extended header setting. This method is similar tsetitem __() except that additional header parameters
can be provided as keyword argumenteameis the header field to add andalueis theprimary value for the
header.

For each item in the keyword argument dictionanyarams the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter will be
added akey="value" unless the value islone, in which case only the key will be added.

Here’s an example:

msg.add_header('Content-Disposition’, 'attachment’, filename="bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace _header (_name,_valué
Replace a header. Replace the first header found in the message that magrhesetaining header order and
field name case. If no matching header was fouriegError s raised.

New in version 2.2.2.

2.1 Representing an email message 5

get _content _type ()
Return the message’s content type. The returned string is coerced to lower case of thaifaype/subtype. If
there was n@ontent-Type: header in the message the default type as givegeby default _type() will
be returned. Since according to RFC 2045, messages always have a defaudetypeontent _type()
will always return a value.

RFC 2045 defines a message’s default type teekiplain unless it appears insidenaultipart/digest container,
in which case it would benessage/rfc822. If the Content-Type: header has an invalid type specification, RFC
2045 mandates that the default typetdoe/plain.

New in version 2.2.2.

get _content _maintype ()
Return the message’s main content type. This is thaintype part of the string returned by
get _content _type()

New in version 2.2.2.

get _content _subtype ()
Return the message’s sub-content type. This is tuwbtype part of the string returned by
get _content _type()

New in version 2.2.2.

get _default _type ()
Return the default content type. Most messages have a default content tggpeptfin, except for messages
that are subparts ofiultipart/digest containers. Such subparts have a default content typesdage/rfc822.

New in version 2.2.2.

set _default _type (ctypd
Set the default content typetypeshould either beext/plain or message/rfc822, although this is not enforced.
The default content type is not stored in tbentent-Type: header.

New in version 2.2.2.

get _params ([failobj[, heade[, unquote]]])
Return the messageontent-Type: parameters, as a list. The elements of the returned list are 2-tuples of
key/value pairs, as split on the*sign. The left hand side of the=" is the key, while the right hand side is the

value. If there is no=’ sign in the parameter the value is the empty string, otherwise the value is as described

in get _param() and is unquoted if optionalnquotes True (the default).

Optionalfailobj is the object to return if there is ndontent-Type: header. Optionaheaderis the header to
search instead d@fontent-Type:.

Changed in version 2.2.8nquoteargument added.

get _param (pararT{, failobj[, heade[, unquotd]])
Return the value of th€ontent-Type: header’s paramet@aramas a string. If the message hasGuntent-Type:
header or if there is no such parameter, tfalobj is returned (defaults thione).

Optionalheaderif given, specifies the message header to use inste@droént-Type:.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the

parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of t{eHARSET,
LANGUAGE, VALUE)whereLANGUAGHnay be the empty string. Your application should be prepared to
deal with 3-tuple return values, which it can convert to a Unicode string like so:

param = msg.get_param(’foo’)
if isinstance(param, tuple):
param = unicode(param[2], param[0])

In any case, the parameter value (either the returned string, ¥AtheEitem in the 3-tuple) is always unquoted,
unlessunquotes set toFalse .

6 2 email — An email and MIME handling package

Changed in version 2.2.2nquoteargument added, and 3-tuple return value possible.

set _param (param, valué, heade[, requote{, charse[, Ianguagd]]])
Set a parameter in theontent-Type: header. If the parameter already exists in the header, its value will be
replaced withvalue If the Content-Type: header as not yet been defined for this message, it will be set to
text/plain and the new parameter value will be appended as per RFC 2045.

Optionalheaderspecifies an alternative headeitontent-Type:, and all parameters will be quoted as necessary
unless optionalequoteis False (the default isTrue).

If optional charsetis specified, the parameter will be encoded according to RFC 2231. Oplamalage
specifies the RFC 2231 language, defaulting to the empty string. datisetandlanguageshould be strings.

New in version 2.2.2.

del _param(pararr{, heade[, requotd])
Remove the given parameter completely from @hatent-Type: header. The header will be re-written in place
without the parameter or its value. All values will be quoted as necessary uetpgseis False (the default
is True). Optionalheaderspecifies an alternative ontent-Type:.

New in version 2.2.2.

set _type (typd, headel][, requote!)
Set the main type and subtype for thentent-Type: headertypemust be a string in the formmaintype/subtype,
otherwise &/alueError is raised.

This method replaces th&ontent-Type: header, keeping all the parameters in placeedjuoteis False , this
leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).

An alternative header can be specified in leaderargument. When th€ontent-Type: header is set RIME-
Version: header is also added.

New in version 2.2.2.

get _filename ([failobj])
Return the value of thBlename parameter of th€ontent-Disposition: header of the message, failobj if
either the header is missing, or hasfilename parameter. The returned string will always be unquoted as
per Utils.unquote()

get _boundary ([failobj])
Return the value of thboundary parameter of th€ontent-Type: header of the message, farlobj if either
the header is missing, or has boundary parameter. The returned string will always be unquoted as per
Utils.unquote()

set _boundary (boundary
Set theboundary parameter of th€ontent-Type: header tdoundary set _boundary() will always quote
boundaryif necessary. AeaderParseError is raised if the message object hasGumtent-Type: header.

Note that using this method is subtly different than deleting theColttent-Type: header and adding a new one
with the new boundary viadd _header() , becausset _boundary() preserves the order of tltmntent-
Type: header in the list of headers. However, it doespreserve any continuation lines which may have been
present in the originaContent-Type: header.

get _content _charset ([failobj])
Return thecharset parameter of th€ontent-Type: header, coerced to lower case. If there isJoatent-Type:
header, or if that header has doarset parameterfailobj is returned.

Note that this method differs frorget _charset() which returns theCharset instance for the default
encoding of the message body.

New in version 2.2.2.
get _charsets ([failobj])

Return a list containing the character set names in the message. If the messagéiim@a, then the list will
contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

2.1 Representing an email message 7

Each item in the list will be a string which is the value of tfearset parameter in th€ontent-Type: header
for the represented subpart. However, if the subpart ha@ntent-Type: header, neharset parameter, or is
not of thetext main MIME type, then that item in the returned list will Elob;.

walk ()
Thewalk() method is an all-purpose generator which can be used to iterate over all the parts and subparts of a
message object tree, in depth-first traversal order. You will typicallywsdle() as the iterator in for loop;
each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():

>>> print part.get_content_type()
multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

Message objects can also optionally contain two instance attributes, which can be used when generating the plain
text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers, and the
first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because it falls
outside the standard MIME armor. However, when viewing the raw text of the message, or when viewing the
message in a non-MIME aware reader, this text can become visible.

Thepreambleattribute contains this leading extra-armor text for MIME documents. WheRdhger discov-

ers some text after the headers but before the first boundary string, it assigns this text to the massagels
attribute. When th&enerator is writing out the plain text representation of a MIME message, and it finds the
message haseambleattribute, it will write this text in the area between the headers and the first boundary.
Seeemail.Parser andemail.Generator for details.

Note that if the message object has no preamblepitb@mbleattribute will beNone.

epilogue
The epilogueattribute acts the same way as theambleattribute, except that it contains text that appears
between the last boundary and the end of the message.

One note: when generating the flat text fonaitipart message that has epilogue(using the standar@ener-

ator class), no newline is added after the closing boundary line. If the message objectdmal®gneand its

value does not start with a newline, a newline is printed after the closing boundary. This seems a little clumsy,
but it makes the most practical sense. The upshot is that if you want to ensure that a newline get printed after
your closingmultipart boundary, set thepilogueto the empty string.

Deprecated methods

The following methods are deprecateceimail version 2. They are documented here for completeness.

add _payload (payload
Add payloadto the message object’s existing payload. If, prior to calling this method, the object’s payload was
None (i.e. never before set), then after this method is called, the payload will be the argoemyérad

If the object’s payload was already a list (iis. _multipart() returns 1), thempayloadis appended to the
end of the existing payload list.

For any other type of existing payloaatld _payload() will transform the new payload into a list consisting
of the old payload angayload but only if the document is already a MIME multipart document. This condition

8 2 email — An email and MIME handling package

is satisfied if the message®ontent-Type: header’'s main type is eitherultipart, or there is naContent-Type:
header. In any other situatioMultipartConversionError is raised.

Deprecated since release 2.2.Rise theattach() method instead.

get _type ([failobj])
Return the message’s content type, as a string of the faaimtype/subtype as taken from th&€ontent-Type:
header. The returned string is coerced to lowercase.

If there is noContent-Type: header in the messadajlobj is returned (defaults thlone).
Deprecated since release 2.2.Rse theget _content _type() method instead.

get _main _type ([failobj])
Return the messagefsain content type. This essentially returns tmaintypepart of the string returned by
get _type() , with the same semantics ftailobj.

Deprecated since release 2.2.PIse theget _content _maintype() = method instead.

get _subtype ([failobj])
Return the message’s sub-content type. This essentially returrsulitgpepart of the string returned by
get _type() , with the same semantics ftailobj.

Deprecated since release 2.2.RIse theget _content _subtype() method instead.

2.2 Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together atiach() andset _payload() calls, or they can be created
by parsing a flat text representation of the email message.

Theemail package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to youNtesseagje instance

of the object structure. For simple, non-MIME messages the payload of this root object will likely be a string con-
taining the text of the message. For MIME messages, the root object will rfétuen from itsis _multipart()

method, and the subparts can be accessed vigethepayload() andwalk() methods.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection betweerethail package’s bundled parser and tessage class,
SO your custom parser can create message object trees any way it finds necessary.

The primary parser class Rarser which parses both the headers and the payload of the message. In the case of
multipart messages, it will recursively parse the body of the container message. Two modes of parsing are supported,
strict parsing, which will usually reject any non-RFC compliant message)anparsing, which attempts to adjust

for common MIME formatting problems.

Theemail.Parser module also provides a second class, calledderParser which can be used if you're only
interested in the headers of the messadeaderParser can be much faster in these situations, since it does not
attempt to parse the message body, instead setting the payload to the raw body as HeadegParser has the
same APl as th@arser class.

Parser class API

classParser ([,class[, strict]])
The constructor for th@arser class takes an optional argumemiass This must be a callable factory (such
as a function or a class), and it is used whenever a sub-message object needs to be created. It defaults to
Message (seeemail.Message). The factory will be called without arguments.

The optionaktrict flag specifies whether strict or lax parsing should be performed. Normally, when things like
MIME terminating boundaries are missing, or when messages contain other formatting probleRes stre

2.2 Parsing email messages 9

will raise aMessageParseError . However, when lax parsing is enabled, Barser will attempt to work
around such broken formatting to produce a usable message structure (this doesivtensageParseEr-
ror s are never raised; some ill-formatted messages just can't be parsedtrithéiag defaults toFalse
since lax parsing usually provides the most convenient behavior.

Changed in version 2.2.2: Tls#rict flag was added.
The other publicParser methods are:

parse (fp[, headersonl])
Read all the data from the file-like objdpt parse the resulting text, and return the root message ofgentist
support both theeadline() and theread() methods on file-like objects.

The text contained ifp must be formatted as a block of RFC 2822 style headers and header continuation lines,
optionally preceded by a envelope header. The header block is terminated either by the end of the data or
by a blank line. Following the header block is the body of the message (which may contain MIME-encoded
subparts).

Optionalheadersonlys as with theparse() method.
Changed in version 2.2.2: Theeadersonlylag was added.

parsestr (text[, headersonl})
Similar to theparse() method, except it takes a string object instead of a file-like object. Calling this method
on a string is exactly equivalent to wrappitextin aStringlO instance first and callingarse()

Optionalheadersonlys a flag specifying whether to stop parsing after reading the headers or not. The default
is False , meaning it parses the entire contents of the file.

Changed in version 2.2.2: Theeadersonlylag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-swell package namespace.

message _from _string (s[, fclass[, strict]])
Return a message object structure from a string. This is exactly equival®atrser().parsestr(s)
Optional_classandstrict are interpreted as with tHearser class constructor.

Changed in version 2.2.2: Tistrict flag was added.

message _from _file (fp[, ,clas{, strict]])
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp) . Optional_classandstrict are interpreted as with tHearser class constructor.

Changed in version 2.2.2: Tistrict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import emalil
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

e Most nonmultipart type messages are parsed as a single message object with a string payload. These objects
will return False foris _multipart() . Theirget _payload() = method will return a string object.

e All multipart type messages will be parsed as a container message object with a list of sub-message ob-
jects for their payload. The outer container message will refutre for is _multipart() and their
get _payload() method will return the list oMessage subparts.

10 2 email — An email and MIME handling package

e Most messages with a content typenadfssage/* (e.g. message/deliver-status andmessage/rfc822) will also be
parsed as container object containing a list payload of length 1. Eheimultipart() method will return
True . The single element in the list payload will be a sub-message object.

2.3 Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message viartiiplib module or thenntplib

module, or print the message on the console. Taking a message object structure and producing a flat text document is
the job of theGenerator class.

Again, as with theemail.Parser module, you aren'’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure viRénser class, and back to flat text, is idempotent (the

input is identical to the output).

Here are the public methods of tienerator class:

classGenerator (outfp[, mangl&from,[, maxheaderle]1])
The constructor for th&enerator class takes a file-like object callexitfp for an argument.outfp must
support thevrite() method and be usable as the output file in a Python extended print statement.

Optionalmangle from_is a flag that, wheifrue , puts a >’ character in front of any line in the body that starts
exactly as From ’, i.e. From followed by a space at the beginning of the line. This is the only guaranteed
portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header separator (see
WHY THE CONTENT-LENGTH FORMAT IS BADfor details). mangle_from_ defaults toTrue , but you

might want to set this t&alse if you are not writing Unix mailbox format files.

Optionalmaxheaderlerspecifies the longest length for a non-continued header. When a header line is longer
thanmaxheaderlerfin characters, with tabs expanded to 8 spaces), the header will be broken on semicolons
and continued as per RFC 2822. If no semicolon is found, then the header is left alone. Set to zero to disable
wrapping headers. Default is 78, as recommended (but not required) by RFC 2822.

The other publicGGenerator methods are:

flatten (msg[, unixfrom])
Print the textual representation of the message object structure roatestytt the output file specified when
the Generator instance was created. Subparts are visited depth-first and the resulting text will be properly
MIME encoded.

Optionalunixfromis a flag that forces the printing of the envelope header delimiter before the first RFC 2822
header of the root message object. If the root object has no envelope header, a standard one is crafted. By
default, this is set téalse to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.
New in version 2.2.2.

clone (fp)
Return an independent clone of tié&nerator instance with the exact same options.

New in version 2.2.2.

write (S)
Write the strings to the underlying file object, i.eoutfp passed td&Generator s constructor. This provides
just enough file-like API folGenerator instances to be used in extended print statements.

As a convenience, see the methotlkessage.as _string() and str(aMessage) , a.k.a. Mes-
sage. __str __() , which simplify the generation of a formatted string representation of a message object. For
more detail, seemail.Message

2.3 Generating MIME documents 11

The email.Generator module also provides a derived class, callgecodedGenerator which is like the
Generator base class, except that nxt parts are substituted with a format string representing the part.

classDecodedGenerator (outfp{, mangl&frorm[, maxheaderleh fmt]]])
This class, derived fronBenerator walks through all the subparts of a message. If the subpart is of main
typetext, then it prints the decoded payload of the subpart. Optionangle from_ andmaxheaderlemre as
with theGenerator base class.

If the subpart is not of main typext, optionalfmtis a format string that is used instead of the message payload.
fmtis expanded with the following keyword€s{(keyword)s ' format:

otype — Full MIME type of the nontext part

emaintype — Main MIME type of the norntext part

esubtype — Sub-MIME type of the nonext part

ofilename - Filename of the norext part

edescription — Description associated with the naxt part
eencoding — Content transfer encoding of the ntst part

The default value fofmtis None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Deprecated methods

The following methods are deprecateceimail version 2. They are documented here for completeness.

__call __(msg{, unixfrom])
This method is identical to thigatten() method.
Deprecated since release 2.2.2Ise theflatten() method instead.

2.4 Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and addessyage objects,

move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by crealessage instances, adding attachments and all the appropriate
headers manually. For MIME messages though etimail package provides some convenient subclasses to make
things easier. Each of these classes should be imported from a module with the same name as the class, from within
theemail package. E.g.:

import email. MIMEImage.MIMEImage

or

from email. MIMEText import MIMEText

Here are the classes:

12 2 email — An email and MIME handling package

classMIMEBase(_maintype,_subtype, ** paramg
This is the base class for all the MIME-specific subclassédexfsage . Ordinarily you won't create instances

specifically of MIMEBase, although you could MIMEBase is provided primarily as a convenient base class
for more specific MIME-aware subclasses.

_maintypeis the Content-Type: major type (e.g. text or image), and _subtypeis the Content-Type: mi-
nor type (e.g. plain or gif). _paramsis a parameter key/value dictionary and is passed directliylés-
sage.add _header()

The MIMEBase class always adds@ontent-Type: header (based anmaintype _subtypeand_paramg, and
aMIME-Version: header (always set thO).

classMIMENonMultipart ()
A subclass oMIMEBase, this is an intermediate base class for MIME messages that amuttidart. The
primary purpose of this class is to prevent the use ofattach() method, which only makes sense for
multipart messages. Kittach() is called, aMultipartConversionError exception is raised.

New in version 2.2.2.

classMIMEMultipart ~ ([subtypé, boundar)[, fsubpart:{, fparams]]]])
A subclass oMIMEBase, this is an intermediate base class for MIME messages thataltipart. Optional
_subtypedefaults tomixed, but can be used to specify the subtype of the messageonéent-Type: header of
multipart/_subtypewill be added to the message objectMMME-Version: header will also be added.

Optionalboundaryis the multipart boundary string. Whédone (the default), the boundary is calculated when
needed.

_subpartss a sequence of initial subparts for the payload. It must be possible to convert this sequence to a list.
You can always attach new subparts to the message by usiMggsage.attach() method.

Additional parameters for theontent-Type: header are taken from the keyword arguments, or passed into the
_paramsargument, which is a keyword dictionary.

New in version 2.2.2.

classMIMEAudio (faudiodatz{, fsubtypé, ,encode[, * fparams]]])
A subclass oMIMENonMultipart , theMIMEAudio class is used to create MIME message objects of major
type audio. _audiodatais a string containing the raw audio data. If this data can be decoded by the standard
Python modulesndhdr , then the subtype will be automatically included in thentent-Type: header. Other-
wise you can explicitly specify the audio subtype via tteibtypeparameter. If the minor type could not be
guessed andsubtypewas not given, theitypeError s raised.

Optional_encodelis a callable (i.e. function) which will perform the actual encoding of the audio data for trans-
port. This callable takes one argument, which isMi®#EAudio instance. It should usget _payload()
andset _payload() to change the payload to encoded form. It should also addCanyent-Transfer-

Encoding: or other headers to the message object as necessary. The default encoding is base64. See the

email.Encoders ~ module for a list of the built-in encoders.
_paramsare passed straight through to the base class constructor.

classMIMEImage(fimagedati, fsubtypé, ,encode[, *x fparams]]])
A subclass oMIMENonMultipart , theMIMEImage class is used to create MIME message objects of major
typeimage. _imagedatas a string containing the raw image data. If this data can be decoded by the standard
Python modulemghdr , then the subtype will be automatically included in tentent-Type: header. Other-
wise you can explicitly specify the image subtype via tiseibtypeparameter. If the minor type could not be
guessed andsubtypewas not given, thefiypeError s raised.

Optional_encodeiis a callable (i.e. function) which will perform the actual encoding of the image data for trans-
port. This callable takes one argument, which isMi&EImage instance. It should usget _payload()
andset _payload() to change the payload to encoded form. It should also addCanyent-Transfer-

Encoding: or other headers to the message object as necessary. The default encoding is base64. See the

email.Encoders ~ module for a list of the built-in encoders.
_paramsare passed straight through to tié@VIEBase constructor.

2.4 Creating email and MIME objects from scratch 13

classMIMEMessage(fmsg{, fsubtype])
A subclass oMIMENonMultipart , the MIMEMessage class is used to create MIME objects of main type
message. _msgis used as the payload, and must be an instance of Blassage (or a subclass thereof),
otherwise a'ypeError is raised.

Optional _subtypesets the subtype of the message; it defaulticg22.

classMIMEText (,text[, fsubtypé, fcharse[, fencoder]]])
A subclass oMIMENonMultipart , theMIMEText class is used to create MIME objects of major tygpe.
_textis the string for the payload.subtypds the minor type and defaults ptain. _charsetis the character set
of the text and is passed as a parameter taMhidENonMultipart ~ constructor; it defaults tas-ascii
No guessing or encoding is performed on the text data.

Deprecated since release 2.2.Zhe _encodingargument has been deprecated. Encoding now happens implic-
itly based on the_charsetargument.

2.5 Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822 standard
which came into widespread use at a time when most email was composasdioitharacters only. RFC 2822 is a
specification written assuming email contains only 7AsC11 characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific charac-
ter sets can now be used in email messages. The base standard still requires email messages to be transfered using only
7-bit Ascii characters, so a slew of RFCs have been written describing how to encode email containkgrnon-
characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047, and RFC 2231.
Theemail package supports these standards iriitgil. Header andemail.Charset modules.

If you want to include norsscil characters in your email headers, say in$hbject: or To: fields, you should use the
Header class and assign the field in tMessage object to an instance ¢ddeader instead of using a string for the
header value. For example:

>>> from email.Message import Message
>>> from email.Header import Header
>>> msg = Message()

>>> h = Header('p\xféstal’, 'is0-8859-1’)
>>> msg['Subject’] = h

>>> print msg.as_string()

Subject: =?is0-8859-1?(q?p=F6stal?=

Notice here how we wanted ttgibject: field to contain a nomscil character? We did this by creatingHgader
instance and passing in the character set that the byte string was encoded in. When the sutdssgagatinstance

was flattened, th8ubject: field was properly RFC 2047 encoded. MIME-aware mail readers would show this header
using the embedded ISO-8859-1 character.

New in version 2.2.2.
Here is theHeader class description:

classHeader ([s[charse[, maxlinelerﬁ, headeLnam{, continuatiorlws[, errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optionals is the initial header value. Ilone (the default), the initial header value is not set. You can later
append to the header witippend() method calls.s may be a byte string or a Unicode string, but see the
append() documentation for semantics.

14 2 email — An email and MIME handling package

Optional charsetserves two purposes: it has the same meaning ashhiesetargument to theppend()
method. It also sets the default character set for all subsegppehd() calls that omit theharsetargument.
If charsetis not provided in the constructor (the default), tleeascii character set is used bothssinitial
charset and as the default for subsequgend() calls.

The maximum line length can be specified explicitwiaxlinelen For splitting the first line to a shorter value (to
account for the field header which isn’t includedsj®.g. Subject:) pass in the name of the fieldlireader name
The defaultmaxlinelenis 76, and the default value fdreader nameis None, meaning it is not taken into
account for the first line of a long, split header.

Optionalcontinuation. ws must be RFC 2822-compliant folding whitespace, and is usually either a space or a
hard tab character. This character will be prepended to continuation lines.

Optionalerrorsis passed straight through to tappend() method.

append (s[, charse[, errors]])
Append the stringto the MIME header.

Optionalcharset if given, should be £harset instance (seemail.Charset) or the name of a character
set, which will be converted to@harset instance. A value dilone (the default) means that tlvharsetgiven
in the constructor is used.

s may be a byte string or a Unicode string. If it is a byte string (istnstance(s, str) is true), then
charsetis the encoding of that byte string, antDaicodeError will be raised if the string cannot be decoded
with that character set.

If sis a Unicode string, thenharsetis a hint specifying the character set of the characters in the string. In
this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string will be
encoded using the following charsets in ordes:ascii , thecharsethint, utf-8 . The first character set to

not provoke dJnicodeError is used.

Optionalerrorsis passed through to amyicode() or ustr.encode() call, and defaults to “strict”.

encode ([splitchars])
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating non-
ASCII parts in base64 or quoted-printable encodings. Optigplégtharsis a string containing characters to split
long ASCII lines on, in rough support of RFC 2822igjhest level syntactic break3 his doesn'’t affect RFC
2047 encoded lines.

TheHeader class also provides a number of methods to support standard operators and built-in functions.

__str __()
A synonym forHeader.encode() . Useful forstr(aHeader)

__unicode __()
A helper for the built-inunicode() function. Returns the header as a Unicode string.

__eq__(othen
This method allows you to compare twieader instances for equality.
__ne__(othen

This method allows you to compare twieader instances for inequality.
Theemail.Header module also provides the following convenient functions.

decode _header (‘heade)
Decode a message header value without converting the character set. The header vakedistin

This function returns a list ofdecoded _string, charset) pairs containing each of the decoded parts
of the headercharsetis None for non-encoded parts of the header, otherwise a lower case string containing the
name of the character set specified in the encoded string.

Here’s an example:

2.5 Internationalized headers 15

>>> from email.Header import decode_header
>>> decode_header('=?is0-8859-1?q?p=F6stal?=")
[(p\\xf6stal’, 'is0-8859-1")]

make_header (decodedsec[, maxlinelerﬁ, headeLname[, continuatioers]]])
Create dHeader instance from a sequence of pairs as returneddmpde _header()

decode _header() takes a header value string and returns a sequence of pairs of the f@henat
coded _string, charset) wherecharsetis the name of the character set.

This function takes one of those sequence of pairs and retukhsader instance. Optionamaxlinelen
header name andcontinuation wsare as in thédeader constructor.

2.6 Representing character sets

This module provides a clagharset for representing character sets and character set conversions in email mes-
sages, as well as a character set registry and several convenience methods for manipulating this registry. Instances of
Charset are used in several other modules within émeail package.

New in version 2.2.2.

classCharset ([inpuLcharsel])
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in an
email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or bodies.
Certain character sets must be converted outright, and are not allowed in email.

Optionalinput_charsetis as described below; it is always coerced to lower case. After being alias normalized

it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,
and output conversion codec to be used for the character set. For exanmetitharsetis iso-8859-1

then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary.
If input_charsetis euc-jp , then headers will be encoded with base64, bodies will not be encoded, but output
text will be converted from theuc-jp character set to thiso-2022-jp character set.

Charset instances have the following data attributes:

input _charset
The initial character set specified. Common aliases are converted totfa@al email names (e.datin _1
is converted taso-8859-1). Defaults to 7-bitus-ascii

header _encoding
If the character set must be encoded before it can be used in an email header, this attribute will be set to
Charset.QP (for quoted-printable)Charset.BASE64 (for base64 encoding), @harset. SHORTEST
for the shortest of QP or BASE64 encoding. Otherwise, it wilNmme.

body _encoding
Same asheader encoding but describes the encoding for the mail message’s body, which indeed may be
different than the header encodir@harset. SHORTEST is not allowed fotbody_encoding

output _charset
Some character sets must be converted before they can be used in email headers or bodieputf tharset
is one of them, this attribute will contain the name of the character set output will be converted to. Otherwise, it
will be None.

16 2 email — An email and MIME handling package

input _codec
The name of the Python codec used to converirthet_charseto Unicode. If no conversion codec is necessary,
this attribute will beNone.

output _codec
The name of the Python codec used to convert Unicode toutput _charset If no conversion codec is neces-
sary, this attribute will have the same value asitipait_codec

Charset instances also have the following methods:

get _body _encoding ()
Return the content transfer encoding used for body encoding.

This is either the stringquoted-printable ' or ‘base64 ' depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being encoded.
The function should then set ti®ntent-Transfer-Encoding: header itself to whatever is appropriate.

Returns the string duoted-printable if body_encodingis QP returns the string base64 ' if
body_encodings BASE64, and returns the string’bit ' otherwise.

convert (s)
Convert the string from theinput_codecto theoutput_codec

to _splittable (9
Convert a possibly multibyte string to a safely splittable fornsas.the string to split.

Uses thanput_codecto try and convert the string to Unicode, so it can be safely split on character boundaries
(even for multibyte characters).

Returns the string as-is if it isn't known how to convetb Unicode with theénput_charset

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
‘U+FFFD.

from _splittable (ustr[, to,output])
Convert a splittable string back into an encoded strirggr is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

Characters that could not be converted from Unicode will be replaced with an appropriate character (usually
l?!).

If to_outputis True (the default), usesutput_codecto convert to an encoded format.ttf_outputis False
it usesinput_codec

get _output _charset ()
Return the output character set.

This is theoutput_charsetattribute if that is nolNone, otherwise it isnput_charset

encoded _header _len ()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encoding.

header _encode (s[, convert])
Header-encode the strirsg

If convertis True , the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-ldgaller class to deal with these issues (see
email.Header). convertdefaults toFalse .

The type of encoding (base64 or quoted-printable) will be based dmethder encodingattribute.

body _encode (s[, convert])
Body-encode the string

2.6 Representing character sets 17

If convertis True (the default), the string will be converted from the input charset to output charset automat-
ically. Unlike header _encode() , there are no issues with byte boundaries and multibyte charsets in email
bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based dooitiye encodingattribute.
TheCharset class also provides a number of methods to support standard operations and built-in functions.

_str _()
Returnsinput_charsetas a string coerced to lower case.repr __() isanalias for__str __() .

__eq__(othen
This method allows you to compare té@harset instances for equality.
__ne__(othen

This method allows you to compare t@harset instances for inequality.

The email.Charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

add _charset (charse[, headeLenc[, bod)Len({, outpuLcharseI]]])
Add character properties to the global registry.

charsetis the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either Charset.QP for quoted-printable Charset.BASE64 for
base64 encodingzharset. SHORTEST for the shortest of quoted-printable or base64 encodindyare
for no encodingSHORTESTSs only valid forheader_enc The default ifNone for no encoding.

Optionaloutput_charsetis the character set that the output should be in. Conversions will proceed from input
charset, to Unicode, to the output charset when the meithadset.convert() is called. The default is to
output in the same character set as the input.

Bothinput_charsetandoutput_charsetmust have Unicode codec entries in the module’s character set-to-codec
mapping; useadd _codec() to add codecs the module does not know about. Seedbecs module’s
documentation for more information.

The global character set registry is kept in the module global dictioBaI&RSETS

add _alias (alias, canonica)
Add a character set aliaglias is the alias name, e.datin-1 . canonicalis the character set’s canonical
name, e.giso-8859-1

The global charset alias registry is kept in the module global dictioARIASES.

add _codec (charset, codecname
Add a codec that map characters in the given character set to and from Unicode.

charsetis the canonical name of a character setdecnamés the name of a Python codec, as appropriate for
the second argument to teicode() built-in, or to theencode() method of a Unicode string.

2.7 Encoders

When creatindlessage objects from scratch, you often need to encode the payloads for transport through compliant
mail servers. This is especially true fiarage/* andtext/* type messages containing binary data.

The email package provides some convenient encodings iklitsoders module. These encoders are actually

used by theviIMEImage andMIMEText class constructors to provide default encodings. All encoder functions take
exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the payload
to this newly encoded value. They should also settheent-Transfer-Encoding: header as appropriate.

Here are the encoding functions provided:

18 2 email — An email and MIME handling package

encode _quopri (msg
Encodes the payload into quoted-printable form and set€thent-Transfer-Encoding: header taquoted-
printable 1. Thisis a good encoding to use when most of your payload is normal printable data, but contains
a few unprintable characters.

encode _base64 (msg
Encodes the payload into base64 form and set<tent-Transfer-Encoding: header tadbase64 . This is
a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode _7or8bit (msg
This doesn’t actually modify the message’s payload, but it does s&ldhent-Transfer-Encoding: header to
either7bit or8bit as appropriate, based on the payload data.

encode _noop (msg
This does nothing; it doesn’t even set thentent-Transfer-Encoding: header.

2.8 Exception classes

The following exception classes are defined inehgil.Errors module:

exceptionMessageError ()
This is the base class for all exceptions that ¢éneail package can raise. It is derived from the standard
Exception class and defines no additional methods.

exceptionMessageParseError ()
This is the base class for exceptions thrown byRheser class. It is derived fronMlessageError

exceptionHeaderParseError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from thRarser.parse() or Parser.parsestr() methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of the
message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the headers
which is neither a header or a continuation line.

exceptionBoundaryError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from thRarser.parse() or Parser.parsestr() methods.

Situations where it can be raised include not being able to find the starting or terminating boundamyltin a
part/* message when strict parsing is used.

exceptionMultipartConversionError 0
Raised when a payload is added tdMassage object usingadd _payload() , but the payload is already a
scalar and the messag&sntent-Type: main type is not eithemultipart or missing. MultipartConver-
sionError multiply inherits fromMessageError and the built-inTypeError

SinceMessage.add _payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if tagtach() = method is called on an instance of a class derived fkdim
MENonMultipart (e.g. MIMEImage).

2.9 Miscellaneous utilities

There are several useful utilities provided with #mail package.

guote (str)

INote that encoding witencode _quopri() also encodes all tabs and space characters in the data.

2.8 [Exception classes 19

Return a new string with backslashes str replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote (str)

Return a new string which is amquotedversion ofstr. If str ends and begins with double quotes, they are
stripped off. Likewise ifstr ends and begins with angle brackets, they are stripped off.

parseaddr (addres$¥
Parse address — which should be the value of some address-containing field Soichrade: — into its con-

stituentrealnameandemail addresgarts. Returns a tuple of that information, unless the parse fails, in which
case a 2-tuple of’, ") is returned.

formataddr (pair)

The inverse oparseaddr() , this takes a 2-tuple of the forfnealname, email _address) and re-
turns the string value suitable foffa: or Cc: header. If the first element phir is false, then the second element
is returned unmodified.

getaddresses (fieldvalue$

This method returns a list of 2-tuples of the form returnedobyseaddr()

header field values as might be returnedMigssage.get _all()
recipients of a message:

. fieldvaluesis a sequence of
. Here’s a simple example that gets all the

from email.Utils import getaddresses

tos = msg.get_all('to’, [])

ccs = msg.get_all(ec’, [])

resent_tos = msg.get_all('resent-to’, [])

resent_ccs = msg.get_all(resent-cc’, [])

all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate (date

Attempts to parse a date according to the rules in RFC 2822. however, some mailers don't follow that format as

specified, sparsedate() tries to guess correctly in such casdateis a string containing an RFC 2822 date,

such as'Mon, 20 Nov 1995 19:12:08 -0500" . If it succeeds in parsing the datgarsedate()

returns a 9-tuple that can be passed directiyn@.mktime() ; otherwiseNone will be returned. Note that

fields 6, 7, and 8 of the result tuple are not usable.
parsedate _tz (datg

Performs the same function parsedate() , but returns eithelone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directlytitoe.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time)f the input string has no timezone, the last
element of the tuple returnedione. Note that fields 6, 7, and 8 of the result tuple are not usable.

mktime _tz (tuple

Turn a 10-tuple as returned Iparsedate _tz() into a UTC timestamp. It the timezone item in the tuple is
None, assume local time. Minor deficiencynktime _tz() interprets the first 8 elements tfple as a local
time and then compensates for the timezone difference. This may yield a slight error around changes in daylight
savings time, though not worth worrying about for common use.

formatdate ([timeva[, Iocaltime]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted Htiyne.gmtime()

and
time.localtime() , otherwise the current time is used.

2Note that the sign of the timezone offset is the opposite of the sign diftleetimezone

variable for the same timezone; the latter variable
follows the POSIX standard while this module follows RFC 2822.

20 2 email — An email and MIME handling package

Optionallocaltimeis a flag that whefTrue , interpretdimeval and returns a date relative to the local timezone
instead of UTC, properly taking daylight savings time into account. The defabBllse meaning UTC is
used.

make_msgid ([idstring])
Returns a string suitable for an RFC 2822-complidatsage-ID: header. Optionatistringif given, is a string
used to strengthen the uniqueness of the message id.

decode _rfc2231 (9)
Decode the string according to RFC 2231.

encode _rfc2231 (s[, charse[, Ianguagd])
Encode the string according to RFC 2231. Optionaharsetandlanguage if given is the character set name
and language name to use. If neither is givers returned as-is. I€harsetis given butlanguageis not, the
string is encoded using the empty string flanguage

decode _params (paramg
Decode parameters list according to RFC 22Baramsis a sequence of 2-tuples containing elements of the
form (content-type, string-value)

The following functions have been deprecated:

dump_address _pair (pair)
Deprecated since release 2.2.RIseformataddr() instead.

decode (9)
Deprecated since release 2.2.2lseHeader.decode _header() instead.

encode (s[, charse[, encodind])
Deprecated since release 2.2.RlseHeader.encode() instead.

2.10 Iterators

Iterating over a message object tree is fairly easy withMlessage.walk() = method. Theemail.lterators
module provides some useful higher level iterations over message object trees.

body _line _iterator (msg[, decodd)
This iterates over all the payloads in all the subparthns§ returning the string payloads line-by-line. It skips
over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from a fileeasiie()
skipping over all the intervening headers.

Optionaldecodds passed through tdessage.get _payload()

typed _subpart _iterator (msg{, maintypci, subtypé])
This iterates over all the subpartsragg returning only those subparts that match the MIME type specified by
maintypeandsubtype

Note thatsubtypeis optional; if omitted, then subpart MIME type matching is done only with the main type.
maintypeis optional too; it defaults teext.

Thus, by defaultyped _subpart _iterator() returns each subpart that has a MIME typeesf/*.

The following function has been added as a useful debugging tool. It shotilte considered part of the supported
public interface for the package.

_structure (msg[, fp[, Ievel]])
Prints an indented representation of the content types of the message object structure. For example:

2.10 lterators 21

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed
text/plain
text/plain
multipart/digest
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
text/plain

Optionalfp is a file-like object to print the output to. It must be suitable for Python’s extended print statement.
levelis used internally.

2.11 Differences from email vl (up to Python 2.2.1)

Version 1 of theemail package was bundled with Python releases up to Python 2.2.1. Version 2 was developed for
the Python 2.3 release, and backported to Python 2.2.2. It was also available as a separate distutils based package.
email version 2 is almost entirely backward compatible with version 1, with the following differences:

e Theemail.Header andemail.Charset modules have been added.

e The pickle format foMessage instances has changed. Since this was never (and still isn’t) formally defined,

this isn’t considered a backward incompatibility. However if your application pickles and unpMidssage
instances, be aware that @mail version 2,Message instances now have private variablesharsetand
_default_type

Several methods in thilessage class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation fddhsage class for details. The changes should be
completely backward compatible.

The object structure has changed in the facene$sage/rfc822 content types. Iremail version 1, such a
type would be represented by a scalar payload, i.e. the container messageisltipart() returned false,
get _payload() was not a list object, but a singMessage instance.

This structure was inconsistent with the rest of the package, so the object representatiesstaye/rfc822
content types was changed. émail version 2, the containetoesreturnTrue fromis _multipart() .
andget _payload() returns a list containing a singMessage item.

Note that this is one place that backward compatibility could not be completely maintained. However, if you're
already testing the return type gét _payload() , you should be fine. You just need to make sure your code
doesn’'tdo aet _payload() withaMessage instance on a container with a content typenessage/rfc822.

The Parser constructor’sstrict argument was added, and fiarse() andparsestr() methods grew a
headersonlyargument. Thestrict flag was also added to functioesnail. message _from _file() and
email.message _from _string()

Generator. __call __() is deprecated; usBenerator.flatten() instead. TheSenerator class
has also grown thelone() method.

22

2 email — An email and MIME handling package

TheDecodedGenerator class in theemail.Generator module was added.

The intermediate base clas$dBVIENonMultipart andMIMEMultipart have been added, and interposed
in the class hierarchy for most of the other MIME-related derived classes.

The _encoderargument to thd&1IMEText constructor has been deprecated. Encoding now happens implicitly
based on the charsetargument.

The following functions in theemail.Utils module have been deprecatetiimp_address _pairs()
decode() , andencode() . The following functions have been added to the moduteitke_msgid()
decode _rfc2231() ,encode _rfc2231() ,anddecode _params() .

The non-public functiommail.lterators. _structure() was added.

2.12 Differences from mimelib

Theemail package was originally prototyped as a separate library calledtlib . Changes have been made so that

method names are more consistent, and some methods or modules have either been added or removed. The semantics
of some of the methods have also changed. For the most part, any functionality availabteeiib is still available

in theemail package, albeit often in a different way. Backward compatibility betweemiheelib package and

theemail package was not a priority.

Here is a brief description of the differences betweenrtimelib and theemail packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been emaaiged to
In addition, the top-level package has the following differences:

messageFromsString() has been renamed teessage _from _string()

messageFromFile() has been renamed toessage _from _file()

TheMessage class has the following differences:

The methodasString() was renamed tas _string()

The methodsmultipart() was renamed tis _multipart()
Theget _payload() method has grown decodeoptional argument.
The methodyetall() was renamed tget _all()

The methocaddheader() was renamed tadd _header()

The methodyettype() was renamed tget _type()

The methodetmaintype() was renamed tget _main _type()

The methodyetsubtype() was renamed tget _subtype()

The methodyetparams() was renamed tget _params() . Also, whereagetparams() returned a list
of strings,get _params() returns a list of 2-tuples, effectively the key/value pairs of the parameters, split on
the =’ sign.

The methodyetparam() was renamed tget _param() .
The methodyetcharsets() was renamed tget _charsets()

The methodyetfilename() was renamed tget _filename()

2.12

Differences from mimelib 23

e The methodyetboundary() = was renamed tget _boundary()
e The methodsetboundary() was renamed teet _boundary()

e The methodgetdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decoddlag of the getpayload() method.

e The methodgetpayloadastext() was removed. Similar functionality is supported by thecoded-
Generator class in theemail.Generator module.

e The methodyetbodyastext() was removed. You can get similar functionality by creating an iterator with
typed _subpart _iterator() in theemail.lterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents ddessage instance containing separdi#essage
subparts for each header block in the delivery status notification

The Generator class has no differences in its public interface. There is a new class anthié Generator
module though, calle®ecodedGenerator which provides most of the functionality previously available in the
Message.getpayloadastext() method.

The following modules and classes have been changed:

e The MIMEBase class constructor argumentsnajor and _minor have changed tamaintypeand _subtype
respectively.

e Thelmage class/module has been renamedvtMEImage. The _minor argument has been renamed to
_sSubtype

e TheText class/module has been rename®METext . The_minorargument has been renamed gubtype

e The MessageRFC822 class/module has been renameditMEMessage. Note that an earlier version of
mimelib called this class/moduRRFC822, but that clashed with the Python standard library modialg22
on some case-insensitive file systems.

Also, theMIMEMessage class now represents any kind of MIME message with main tygssage. It takes
an optional argumentsubtypewhich is used to set the MIME subtypesubtypedefaults torfc822.

mimelib provided some utility functions in itaddress anddate modules. All of these functions have been
moved to theemail.Utils module.

The MsgReader class/module has been removed. Its functionality is most closely supported in the
body _line _iterator() function in theemail.lterators module.

2.13 Examples

Here are a few examples of how to use émeail package to read, write, and send simple email messages, as well as
more complex MIME messages.

First, let's see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email. MIMEText import MIMEText

3Delivery Status Notifications (DSN) are defined in RFC 1894.

24 2 email — An email and MIME handling package

Open a plain text file for reading. For this example, assume that
the text file contains only ASCIl characters.

fp = open(textfile, 'rb’)

Create a text/plain message

msg = MIMEText(fp.read())

fp.close()
me == the sender’'s email address
you == the recipient's email address

msg['Subject’] = 'The contents of %s’ % textfile
msg['’From’] = me
msg['To’] = you

Send the message via our own SMTP server, but don't include the
envelope header.

s = smtplib.SMTP()

s.connect()

s.sendmail(me, [you], msg.as_string())

s.close()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in a
directory:

Import smtplib for the actual sending function
import smtplib

Here are the email pacakge modules we’ll need
from email. MIMEImage import MIMEImage
from email. MIMEMultipart import MIMEMultipart

COMMASPACE =, ’

Create the container (outer) email message.

msg = MIMEMultipart()

msg['Subject’] = 'Our family reunion’

me == the sender’s email address

family = the list of all recipients’ email addresses
msg['From’] = me

msg['To'] = COMMASPACE.join(family)
msg.preamble = 'Our family reunion’

Guarantees the message ends in a newline
msg.epilogue = "

Assume we know that the image files are all in PNG format
for file in pndfiles:
Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, 'rb’)
img = MIMEImage(fp.read())
fp.close()
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()

s.connect()

s.sendmail(me, family, msg.as_string())
s.close()

2.13 Examples 25

Here’s an example of how to send the entire contents of a directory as an email méssage:
#!/usr/bin/env python
""Send the contents of a directory as a MIME message.
Usage: dirmail [options] from to [to ...]*

Options:
-h [--help
Print this message and exit.

-d directory

--directory=directory
Mail the contents of the specified directory, otherwise use the
current directory. Only the regular files in the directory are sent,
and we don't recurse to subdirectories.

‘from’ is the email address of the sender of the message.

‘to’ is the email address of the recipient of the message, and multiple
recipients may be given.

The email is sent by forwarding to your local SMTP server, which then does the
normal delivery process. Your local machine must be running an SMTP server.

import sys

import os

import getopt

import smtplib

For guessing MIME type based on file name extension
import mimetypes

from email import Encoders

from email.Message import Message

from email. MIMEAudio import MIMEAudio
from email. MIMEMultipart import MIMEMultipart
from email.MIMEImage import MIMEImage
from email. MIMEText import MIMEText

COMMASPACE = ', °’

def usage(code, msg="):
print >> sys.stderr, _ doc__
if msg:
print >> sys.stderr, msg
sys.exit(code)

def main():
try:
opts, args = getopt.getopt(sys.argv[1l:], 'hd:’, ['help’, 'directory=")
except getopt.error, msg:
usage(1l, msg)

4Thanks to Matthew Dixon Cowles for the original inspiration and examples.

26 2 email — An email and MIME handling package

dir = os.curdir
for opt, arg in opts:
if opt in (-h’, --help’):
usage(0)
elif opt in (-d’, '--directory’):
dir = arg

if len(args) < 2:
usage(1)

sender = args[0]
recips = args[l:]

Create the enclosing (outer) message

outer = MIMEMultipart()

outer['Subject’] = 'Contents of directory %s’ % os.path.abspath(dir)
outer[To’l] = COMMASPACE join(recips)

outer[From’] = sender

outer.preamble = 'You will not see this in a MIME-aware mail reader.\n’
To guarantee the message ends with a newline

outer.epilogue = "

for filename in os.listdir(dir):
path = os.path.join(dir, filename)
if not os.path.isfile(path):
continue
Guess the content type based on the file's extension. Encoding
will be ignored, although we should check for simple things like
gzip'd or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:
No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’
maintype, subtype = ctype.split('/’, 1)
if maintype == ’'text”
fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)
fp.close()
elif maintype == 'image”
fp = open(path, ’'rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()
elif maintype == ’audio’:
fp = open(path, 'rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()
else:
fp = open(path, 'rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
Encoders.encode_base64(msg)
Set the filename parameter
msg.add_header('Content-Disposition’, 'attachment’, filename=filename)
outer.attach(msg)

2.13 Examples 27

Now send the message

s = smtplib.SMTP()

s.connect()

s.sendmail(sender, recips, outer.as_string())
s.close()

’)

if _name__ =='__main__"
main()

And finally, here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python

Unpack a MIME message into a directory of files.
Usage: unpackmail [options] msdfile

Options:
-h / --help
Print this message and exit.

-d directory

--directory=directory
Unpack the MIME message into the named directory, which will be
created if it doesn't already exist.

msdfile is the path to the file containing the MIME message.

import sys
import os

import getopt
import errno
import mimetypes
import email

def usage(code, msg="):
print >> sys.stderr, _ doc__
if msg:
print >> sys.stderr, msg
sys.exit(code)

def main():
try:
opts, args = getopt.getopt(sys.argv[1l:], 'hd:’, ['help’, 'directory=")
except getopt.error, msg:
usage(1l, msg)

dir = os.curdir
for opt, arg in opts:
if opt in (-h’, '--help’):
usage(0)
elif opt in (-d’, '--directory’):
dir = arg

try:

28 2 email — An email and MIME handling package

msgfile = args[0]
except IndexError:
usage(1)

try:
os.mkdir(dir)
except OSError, e:
Ignore directory exists error
if e.errno <> errno.EEXIST: raise

fp = open(msdfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():
multipart/* are just containers
if part.get_content_maintype() == 'multipart”:
continue
Applications should really sanitize the given filename so that an
email message can't be used to overwrite important files
filename = part.get_filename()
if not filename:
ext = mimetypes.guess_extension(part.get_type())

if not ext:
Use a generic bag-of-bits extension
ext = '.bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(dir, filename), 'wb’)
fp.write(part.get_payload(decode=1))
fp.close()

’)

if _name__ =="'_ main__"
main()

2.13 Examples

29

	1 Introduction
	2 email --- An email and MIME handling package
	2.1 Representing an email message
	Deprecated methods

	2.2 Parsing email messages
	Parser class API
	Additional notes

	2.3 Generating MIME documents
	Deprecated methods

	2.4 Creating email and MIME objects from scratch
	2.5 Internationalized headers
	2.6 Representing character sets
	2.7 Encoders
	2.8 Exception classes
	2.9 Miscellaneous utilities
	2.10 Iterators
	2.11 Differences from email v1 (up to Python 2.2.1)
	2.12 Differences from mimelib
	2.13 Examples

