Linux Network Administrators Guide

Linux Network Administrators Guide

Table of Contents

Preface xiv
1. Purpose and Audience for This BOOKcccueiiiiiiiiiiiiiiiiieeceeee e XV
2. Sources Of INfOrMAtION.cciiiiiiiii ettt eete e et e e et e e eetee e eavee e tbeeeeaaeeeaeaaas XV

2.1. Documentation Available via FTP..........cccccooiiiiiiiic e XVi
2.2. Documentation Available via WWW ... Xvii
2.3. Documentation Available Commerciallycc.ccocceveereriieiiniineninienenieereeeeeen Xvii
2.4. Linux Journal and Linux Magazine..........cccccoceevuererienieninieninieneneeienieerenee e xviii
2.5. LinuX USENet INEWSETOUPS.....eeverrierirerieetienieenitesreenseesseesssesssessseesseesssesssessseessesssesnne Xviii
2.6. LiNUX Mailing LISES ..eeveeiuiiiiieiieiiesie e ettt eete et estteseteseveenbeesieesasessbeesseesseesaseenseenseens Xix
2.7. OnliNe LiNUX SUPPOTT...eeuiiiiieiieitiesieeieeitesiteste st esteesetesteebeesseesasessseesseesssesaseessessseesas XX
2.8. LINUX USET GIOUPS ..veeuveerieriiieieerieesieeteeiteenttestesteesseesssesssesssessssesssessessseesssessesssassseesns XX
2.9. ObtaININg LINUX....coctteiiieriiiiiieieeitesteeite et esiteste st et e satesateesbeesseesatesabeesseesseesaseenseesseenas XX
3. File System Standardsc.eocueerieriiiiienienie ettt sttt sttt sttt ebeesaee e s XXii
4. Standard LiNUX BaSEoiiiiiiiiiieeiie ettt et eeve e ettt eetb e e eaae e etbeeentaeeeaaaeesareaaas XXii
5. ADOUL ThiS BOOKuiiiiiiiiiiiieciie ettt ettt e et e e et e e e abee e sbeeeeseeennseeensseaans XXiii
6. The Official Printed VeTrSION.........ccciiiiiieeriieeiiieciieeeiteeeieeesveeesreeesaeeesaveeeeseessseessseeessseeennns XXiv
T OVEIVIEW ...nevvieiiiieeeiieeeiee e tee ettt e eetee s tteeessaeesssseesssaaassseaessaeasssaeassseeanssaessssaeassseeassaeesssenenssesasses XXV
8. Conventions Used in ThiS BOOK..........cocvuviiiiiiiiiiiieeiiieee et XXVii
9. Submitting CRANZESccveeiiiiiieiiiieeeeee ettt ettt sae e ae e xxviii
10. ACKNOWIEAZMENLS.......ouiiiiiiiiiiiiieieeeeee ettt et e Xxviii
10.1. The Hall Of FAME........oooiiiiiiiiiceieee e e et eeerre e e XXiX

1. Introduction to Networking 1
| R 5 61 0) USRS 1
1.2, TCP/IP INEEWOIKSveiiiiiiiiiiee et e ettt e e ettt e e e e ettt e e e e e etteeeeeeetbaeeeeeentaeeeeesssaseseesnssesseesansaneeeenes 1

1.2.1. Introduction to TCP/IP NEtWOTKS.......c..ccoouiiiiiieeiiee ettt 2
1,22, BREIMELS ..ottt e e ettt e e e e ttae e e e e atbae e e e sataeeeeeenntaeeeeearraaeas 3
1.2.3. Other Types of HardWareccoceeieiiiieiiinieiene ettt 5
1.2.4. The Internet ProtOCOL.......cccuviiiiiiiiiie ettt et et e eaa e et e et e e eaneas 6
1.2.5. TP OVEr Serial LLINEScccveiiiiiiieiiieiciiie ettt ettt et eeetaeeeetaeeeaee e eveeeeaveeeans 8
1.2.6. The Transmission Control ProtoCOL...........cccuiiiuiiieiiiiieiie ettt 8
1.2.7. The User Datagram ProtoCOL...........cocueririeriiniiiiniinieie ettt 9
1.2.8. MOTE ON POILS ...ttt ettt e et e e eeaaeeetaeeeaaseeearaeesaseeenns 9
1.2.9. The SOCKEt LADIATY ...c.vevueiiiiiieiiiiiieierieeteeetee ettt 10
1.3 UUCP NEEWOTKS. ...uuviiiiiiiiiiie et et et et e et s eetaeeeetaeeeetreeeetaeesaveseesaseesasseesasesensseeessaessseannes 10
1.4, LINUX NEIWOTKINE ..eeevvieiieiieriieeieeritesite ettt esite sttt esteesetessteebeessaessseenseessaesnsesnseenseesssesnsesnses 11
1.4.1. Different Streaks of DeVEIOPMENLcc.eevvierieriiiiierienieeieerteste et 12
1.4.2. Where to Get the COAEuoeeviiiiiiieeiii ettt e etee e ste e e sev e esebeeetreeevaeeeaes 13
1.5. Maintaining YOUT SYSTEM.....cccviriiierierierieeriienitesteeieenteesiteeaeesteesitesseeseesseesasesnseesseesssesnseenses 13
1.5.1. SYSIEM SECUIILY c..vveruveeiiieiieeiie ettt et ettt sttt et e sib e s bt esatesbeesabeesbeesaeesaseenseenseenas 13

2. Issues of TCP/IP Networking 16
2.1. Networking INtrfacescc.ooiiiiiiiiieiiicictee ettt 16
2.2, TP AQAIESSES....uveeeeeeeieeee ettt e et e e e et e e e e e eeaba e e e e eebaa e e e e eetaaeeeeetraeeeeeetraeeeeenrreeas 16
2.3, AdAress RESOIULIONccoevviiiiiiiiiiie et ettt eeeetre e e e et e e e e eeataeeeeeenraeeeeeearseeeeeenreeeas 18
24, TP ROULNG ..ottt ettt et st st eae e saeennen 19

241 TP NEEWOIKS ...veeeiiiiiee ettt e et e e ee et e e e eetbaeeeeeeaaeeeeeeensnaeeeeenreeeas 19

iii

3. Configuringthe NetworkingHardware

5. Configuring TCP/IP Networking

5.1. Mounting the /proc FIleSYSIEIMcccceririiriiriiriiiieieneee ettt ettt
5.2. Installing the BINQATIESscccccieiiiiiiiiiiiiiiiiiicere e
5.3. Setting the HOStNAMEccoouiiiiiiiiiiiiiicicieec et et s
5.4. AsSigNnIng IP AdAIESSEScouiiiiiiiiiiiiiieietee ettt st
5.5. Creating SUDINELScocutiiiiiieeieeieeeteete ettt sttt sttt et sat e et e bt esbe e st e e be e beesabesareenbe
5.6. Writing hosts and netWorks FIles..........ccoeoiiiiiieiiiieeeeee e
5.7. Interface Configuration fOr TPccooiiiiiiiire e

2.4.2. SUDNEEWOTKS ...cutviieiiieeiiieeitee ettt ettt e et e et eestbee e tbeeeaseeeaseaessseeansseesnsseesnseeans
2.4.3. GALEWAYS ..eeuveeneeeruieeieettesiteeteeiteesiteestesateesbtesabesateesbeesatesateenbeesstesatesabeenseenseesaseensaenseena
2.4.4. The Routing Tablecc.coviiiiiiiiiiiieieeie ettt ettt sttt st sbe i
2.4.5. MELTIC VAIUCS......uveeeiiiieiiieeiiee ettt e eiteeetteesteeesiteeesbaeessbeeessseeesseeensseaassseeassseessseesseeans

2.5. The Internet Control Message ProtoColcooviviiiriiniiniiiiieiteneeieeteste et
2.6. Resolving HOSt NAMESc..oouiiiiiiiieieiiciceecee ettt st st

3.1. Kernel Configuration............cc.eouieiiiiiiiiiiiniiiieeeeee ettt s

3.1.1. Kernel Options in Linux 2.0 and Higherccccooiiniiiiiiiiceeceeee
3.1.2. Kernel Networking Options in Linux 2.0.0 and Higherccccooceeiininiininienenenee,

3.2. A Tour of Linux NetWOIK DEVICES........oiiiiiieiiiiiiieiiee ettt e s eeaae e e s e snaeeeeeean
3.3, Ethernet INSTAllationcc.uviiiiieiiiieiiceieieee ettt e e e e e et e e e senaaae e e s snaaeeeesenaeeeeeaan

3.3.1. Ethernet AULOPIODINGc.coiiiiiiiieieeteeteete ettt et sttt eae e e eneas

3.4, THE PLIP DIIVET ..uvvviiiiieiieiee ettt e et e e s eaaae e e e senaaaeeessnaaeeesseneeeeeeann
3.5. The PPP and SLIP DIIVETScoouuviiiiiiiieiiie ettt ettt eeae e e e et e e s senaaae e s s snaaseeessnreeeeeens
3.6. Other NetWOrk TYPES ...coveiuieieiieiieeeitee ettt sttt ettt sttt sbe et sbe e e sbeenees

4. Configuring the Serial Hardware

4.1. Communications Software for Modem LInKS...........ccovvviiiiiiiiiiiiiiiiiiiceceieeec e
4.2, Introduction tO Serial DEVICES......cocuveiiiiiiiii ettt eee e et e e e eravae e e e eeareeeeeenaaes
4.3. AccesSINg Serial DEVICEScoueriiriiriiiiriieienierteeei ettt ettt st

4.3.1. The Serial Device Special Files........cccciviiiriiriiiiniiinieeieeieesieeie et

4.4, SErial HATAWATE.....cc.eiiiiiiieeieeitesiteeie ettt sttt sttt et e st e s be e beesaeesabeebeesseesaseeseenseenns
4.5. Using the Configuration ULIEIESeecvierieriieiiieniienie ettt ettt st e esieesreesseeniee e

4.5.1. The setserial COmMMANccooeveiiiiiiiriiieeiiiieie et e et e e e eetreeeeeeereeeeeeesareeeeeenares
4.5.2. The Stty COMMANGeovuiiiieiiieniieeieeieeite ettt et ete et et e st e ssbe e bt e satesateesbeesaeesaeean

4.6. Serial Devices and the 10Zin: PrOmPt..........coocveiiiiniiiniiniiiiiiiierec ettt

4.6.1. Configuring the mgetty DaCmONcccueeriieriiriiiiierieeieeieerteete ettt

5.7.1. The Loopback INterface.cceiuerieiiriieiieieeee e
5.7.2. Ethernet INerfaCescoveiiriiieriieiieieet ettt sttt
5.7.3. Routing Through a Gateway..........ccccerieiiririeneiieiesitete ettt s
5.7.4. Configuring @ GALEWAYcc.eeruerueruieriintietenieetentesteete st et ente et ete et estesbesbteteebeeneesbeenees
5.7.5. The PLIP INTETTACE ...c..coveuiiuiiiiiiiriiiiicietetteeseseeteeetet sttt ettt
5.7.6. The SLIP and PPP INtEIfacesccccecveiririninieieieininesicicteteeeeeiese e
5.7.7. The Dummy INTErface.ccceevueriirieiiinieiiniiteesteet ettt
S5T8 TP ALLAS ..ttt

5.8. Al ADOUEL IFCONTIZ ...ttt sttt eaees
5.9. The netstat COMIMANGeeiiiiiiiiiieiiieee et eetee e eerre e e e eetaeeeeeeetereeeeesareeeeseeaereeeeensrenees

5.9.1. Displaying the RoOUuting Table..........ccccoevieriiriiiiiieiierieeieeeesteste st
5.9.2. Displaying INterface StatiStiCScccueeruerriierieriierieenitenieeteeieesitesteebeeteesaeesreessaenaeenns

5.9.3. Displaying CONNECLIONS.cccuerrueerierierieeniiesteeieenieestesteebeesstesatessbeesseesaeesaseensaenseenas 92

5.10. Checking the ARP TabIEScccterieriiiiieiierie ettt ettt st st 92
6. Name Service and Resolver Configuration 96
6.1. The ReSOIVET LIDIArycccoviiiiiiiiiiiiiiiciciieete ettt ettt 96
6.1.1. The host.CONT FILEooiiiiiiiiiiiiieee ettt 96
6.1.2. The nssWitch.CONf File........cocoiiiiiiiiiiiiii e 98
6.1.3. Configuring Name Server Lookups Using resolv.conf............c..cccceeiviininicninnnnnns 101
6.1.4. ReSOIVET RODUSINESS ..c...eeuiiiiiiiiiiiieeiieeieeeetee ettt st e 103

6.2. HOW DINS WOTKS.....eiiiiiiieiie ettt sttt et ettt e saee s 103
6.2.1. Name Lookups With DNS ..ot 109
6.2.2. TyPes Of NAME SEIVEIS ...c..eeuteiuertieieniieierteeiterte st ete st e e seeeaeestesbeetesteeseestesseeneeseeennens 110
6.2.3. The DNS Databaseceoeeierieruieieiiieierie ettt et sttt et e st saeenaeseeeneens 111
6.2.4. ReVerse LOOKUPSooueiiiiiieieetiee ettt ettt s 113

6.3. RUNNING NAME ...ttt ettt et e b s bt et e st e st et eseeaesbeeneans 114
6.3.1. The named.boot FIle.......cccooiiiiiiiiiiiieieieee et 115
6.3.2. The BIND 8 host.cONf Fileccoooiiiiiiiiiiiiieiiceec e 117
6.3.3. The DNS Database FIlesccoivirieiieiiiiiiiincicicieene e 118
6.3.4. Caching-only named COnfigUurationc..ceoereerienierieneneenienieeteseetenie e 122
6.3.5. Writing the Master FIlesccccoiiiiiiiiiniiiiicicieescee et 123
6.3.6. Verifying the Name Server SEtUPcccccoiriereririinieiee ettt 125
6.3.7. Other Useful TOOIS.......cccouiiiiiiiiiiiicicieieteeeee e 128

7. Serial Line IP 130
7.1. General REQUITEIMENLScc.ccuiiiiiiiiiiiieicieet ettt 130
7.2. SLIP OPEIAtiONccueiuiiiiiiiiiiiiieiiiiieiiiesee ettt st st 130
7.3. Dealing with Private IP NetWOrKS.........coceciriiiiiniiieninieiecccecieseereseeeee e e 137
T4 USINE QIP v 137
741 A SamPIE SCIIPL......oiviiiiiiiiiiic e 138
742, Adip REfEreNnCe......cocviiiiiiiiiiiiiiicc 139

7.5. RUnning in Server MOcccueviiiiriiriiiinieientceeesit ettt sttt st s 143
8. The Point-to-Point Protocol 154
8.1 PPP 0N LINUX 1ttt ettt sttt ettt ettt e sbeesaeeea 154
8.2. RUNNING PPPU ..ttt st s e 155
8.3. USING OPtions FIIES.....cooueiiiiiiiiiiiiieete ettt sttt et 156
8.4. Using chat to AUtomate DIialing.........cceecveruiruieiieniieieieieie ettt 157
8.5. IP Configuration OPLIONSecuerueeieriieierteeteetesteeitete et esteseeetestesseenbesbeentesteeaeessesseeneesseeneenes 160
8.5.1. ChoOSING TP AdAIESSESeveeueiiieiieriieieieettee ettt ettt e st 160
8.5.2. Routing Through a PPP Linkccccoooiiiiiiiiiiiie e 161

8.6. Link CONtrol OPLIONScccueruiiiiitieiieiieiiete sttt e ettt et e sttt et e sbe et e st et enbesbeeneenbesneenes 165
8.7. General Security CONSIAEratiONS.cc.eeteruiruierieniieietietce ettt ettt ettt eee b e 167
8.8. Authentication With PPPcccooiiiiiiiiiiee et 167
8.8.1. PAP Versus CHAP.......ccccooiiiiiiiieceeeteeceeete st 168

8.8.2. The CHAP Secrets Fileccccciviiiriiniiiiiiiiicieeicecee ettt 169
8.8.3. The PAP Secrets Filecc.cociiiiiiiiiiiiicieiicccecsccceeee e 170

8.9. Debugging Your PPP SETUPcc.coiiiiriiiiiiiiieietctee ettt 171
8.10. More Advanced PPP Configurationscccccoeeierieneenienerienienieienieeteneeseeniesieesenieeeeene 172
G101, PPP SEIVETouiiiiiiiiiicicceee ettt 172
8.10.2. Demand DIalinNg.......c.cceecuerriierierieeiienieeteeieesieesteeieesteestesteebeesasesseebeesssesssesaseas 173

8.10.3. PersiStent DIaling........ccocveeiiierieniiiiiesiesteeeete ettt ettt st et 179

9. TCP/IP Firewall 181
9.1. Methods Of AtaCK.......cccovuiiiiiiiiiiiiiiiiiccc s 181
9.2. What Is @ FITEWAll?coioiiiiiiiiiicieeeeeet ettt st s 183
9.3. What IS TP FIIteriNG?cceooiiiiiiiiiiiieieeeeeeetest ettt e s e 184
9.4. Setting Up Linux for FIreWallingccccoiriiiiniiiiiiiiieienieecieeceieseeree e 185

9.4.1. Kernel Configured with IP Firewallcccccooiiiiiiiiiiiiccece e 185
9.4.2. The ipfwadm ULIELYccooouiiiiiiiiiiieeeee et 186
9.4.3. The ipchains ULIIEYcccoouiiiiiiiiiiiiieic et s 186
9.4.4. The 1ptables ULILLY ...c..ccveoueieiririnieteieecesesertcetee ettt s e 187
9.5. Three Ways We Can Do Filteringcoccouevueeiriiininiinieieieininenestceeteteee et 187
9.6. Original IP Firewall (2.0 KeINels).........ceoteiiirieiiiiiieiiciieeeieeee e 189
9.6.1. USING IPIWAAIM ..ttt sttt s e 189
9.6.2. A More Complex EXample........c.ccoeeuevierieininininiiieieeneseeeceeeeeeese e 192
9.6.3. Summary of ipfwadm AIgUMENLScceceriririerieriiiiine e 193
9.7. IP Firewall Chains (2.2 KEINEIS)ceeeeiuiiieiiieiiiie ettt et et e 197
0.7.1. USING IPCRAINS ..c.vteuiiieiiieiiiiteieit ettt ettt sttt ettt st e e sbe e 198
9.7.2. ipchains Command SYNAXcceerueririierierienienieetenteetenteeieerte st ete st eiee st sieenaesbeennens 198
9.7.3. Our Naive Example ReVISitedccceviiririiininiiiiniieieeceesieeeeeeteeeeee e 202
9.7.4. Listing Our Rules with ipChainscoceviriiniiiiiiiniiiiiiccccecteceee e 203
9.7.5. Making Good Use Of Chainsccceeriiririinienieienieeieie ettt 203
9.8. Netfilter and IP Tables (2.4 KeINElS)......ccucoevuiiiiiieieiiieciie ettt e e 208
9.8.1. Backward Compatability with ipfwadmand ipchains...........ccceceevvervieeveeneenienciennnen. 211
0.8.2. USING IPLADIES ...eevveeiiieiieeiieeie ettt ettt st sttt ettt et e sbee st e ebe e beesssesnsesabeas 211
9.8.3. Our Naive Example Revisited, Yet AZainccccecuvrviieriieniiiiieienieeieeeeee e 216
9.9. TOS Bit Manipulation.......ccceecueeriierienieeiienieeniie st esieesieesteeteesteesitesssesaseesseesssesasesnsessseessnenns 217
9.9.1. Setting the TOS Bits Using ipfwadm or ipchains.........ccccceevueeveeniirierneeneenienieenen. 218
9.9.2. Setting the TOS Bits Using iptablesccceevieriiiiiiinienieiieeicenee et 219
9.10. Testing a Firewall CONfIGUIAtIONccuirriiiriieriiiiieeieeiee sttt ettt et e st st ebeesaaesaeeens 220
9.11. A Sample Firewall CONfIGUIAtIONcc.eivviiriiiniiiiiieiieiee ettt ettt st ea 222

10. IP Accounting 229
10.1. Configuring the Kernel for IP ACCOUNTING........ccccocieriiriiiiiniiiiinieeeenecreeeeere e e 229
10.2. Configuring IP ACCOUNTINGccueoiiiiiriieiiriieieit ettt st 229

10.2.1. Accounting by AddIessc..cocueeuirieriiiieienieieieeeete ettt 230
10.2.2. Accounting by Service POrt........cccceoiiiiiiiiiiiiiiieiiiic e 232
10.2.3. Accounting of ICMP Datagramsccecerueeienienienienieeiese et 235
10.2.4. Accounting by ProtOCOL.......cc.cecuiririeriiiieiesieete ettt 236
10.3. Using IP Accounting RESUILScooiiieiiiiieiiiieee et 236
10.3.1. Listing Accounting Data with ipfwadmccccoeiiiiiiniiiiieeee e 237
10.3.2. Listing Accounting Data with ipchainsccccooivieiininiiiiiiecee e 237
10.3.3. Listing Accounting Data With iptablescccceoviriereririenienieeceee e 238
10.4. Resetting the COUNLETSc..couterteririerientieiesteetente ettt e et ette st saeestesbeestenbeeseeneesaeeeesbeeneens 238
10.5. Flushing the RUIESET........cc.iriiiiiiiiieeriteeeeec ettt 239
10.6. Passive Collection of Accounting Data.........cccueeeriereriieiieninieniieeresieeeseeeee e e 239

Vi

11. IP Masquerade and Network Address Translation

11.1. Side Effects and Fringe Benefits...................
11.2. Configuring the Kernel for IP Masquerade ..
11.3. Configuring IP Masquerade................c........

11.3.1. Setting Timing Parameters for IP Masquerade..........c..coccecererieiienincininicncneenns

11.4. Handling Name Server Lookups..................
11.5. More About Network Address Translation..

12. ImportantNetwork Features

12.1. The inetd Super Server..........cccceceeeeeenuennen.
12.2. The tcpd Access Control Facility
12.3. The Services and Protocols Files
12.4. Remote Procedure Callcccoceverienenen.
12.5. Configuring Remote Loginand Execution ...

12.5.1. Disabling the r; Commands.............

12.5.2. Installing and Configuring ssh.........

13. The Network Information System

13.1. Getting Acquainted with NIS.......................
13.2. NIS Versus NIS+.....cooooirieninienniineneenenene
13.3. The Client Side of NIS......cccccocevievinnncnnen.
13.4. Running an NIS Serverccccceeeevvvvereennnnne
13.5. NIS Server Security........ccocceeveereervveereennnene
13.6. Setting Up an NIS Client with GNU libc.....
13.7. Choosing the Right Maps........cccccceeveeueennen.
13.8. Using the passwd and group Maps
13.9. Using NIS with Shadow Support..................

14. The NetworkFile System

14.1. Preparing NFS ...
14.2. Mounting an NFS Volumec...c........
14.3. The NFS Daemonscccccceeeeveeneeeennennen.
14.4. The exports File......c.cccoveervenieiniinninnccneene
14.5. Kernel-Based NFSv2 Server Support
14.6. Kernel-Based NFSv3 Server Support

15. IPX and the NCP Filesystem

15.1. Xerox, Novell, and Historyccccceceeuennen.
15.2. IPX and LinuUXcoceevieninieniinieienceeeeeee
15.2.1. Caldera Support........ccceceerereeneennen.
15.2.2. More on NDS Support........c.cccuen....
15.3. Configuring the Kernel for IPXand NCPFS.
15.4. Configuring IPX Interfacesc..ccccceeeeuennen.
15.4.1. Network Devices Supporting IPX ...
15.4.2. IPX Interface Configuration Tools ..
15.4.3. The ipx_configure Command..........
15.4.4. The ipx_interface Command............
15.5. Configuring an IPX Routercccevuenen.

15.5.1. Static IPX Routing Using the ipx_route Commandcccceerverveerierreenivenseennnen.

15.5.2. Internal IPX Networks and Routing

241

242
243
244
246
249
250

251

251
253
255
257
258
259
259

267

268
270
270
271
272
273
275
277
279

282

283
283
286
287
289
289

291

291
292
292
293
293
294
294
294
294
296
297
298
298

Vii

15.6. Mounting a Remote NetWare VOIUMEcocveriiiiiiiiienieeieeieeiteete ettt 300

15.6.1. A Simple ncpmount EXample........cccovviiriieniiniiiiiiiienieeieeieeiee et 301
15.6.2. The ncpmount Command in Detailcoceeviiiiieriieniiiiieeeieieeeceee e 301
15.6.3. Hiding Your NetWare Login Passwordcccccoeveeviiniiiiiniiinieiieeecceneeeeeeeen 313
15.6.4. A More Complex ncpmount EXample...........ccocueeveiniiniiniienieenienienieeieeseeeeeen 313

15.7. Exploring Some of the Other IPX TOOISccccoerieriiniiiiiniieiereeeenecreeeeee e e 314
157010 SETVET LLISE .ottt ettt et sttt st st ebe e 314
15.7.2. Send Messages to NetWare USETSccccueruieieiinieiiinieienenecreneeeere e 314
15.7.3. Browsing and Manipulating Bindery Data............cccccceviiiiiiniiiininiiiieccneeee 315

15.8. Printing to a NetWare Print QUEUE..........cccccieiiiriiiiiiiiiiiiiicc e 319
15.8.1. Using nprint with the Line Printer Daemoncccocoiiiiiiiiniiiiis 323
15.8.2. Managing Print QUEUESc.cecueruirierieiiieiesieetete ettt ettt sttt e s 325

15.9. NetWare Server EMUIation..........ccooiiiiiieiirieie ettt s 326
16. ManagingTaylor UUCP 327
16.1. UUCP Transfers and Remote EXECULION.........cc.couiriiriiriiiiiiniieienicecee et 328
16.1.1. The Inner Workings of UUCICOcoeeriiiiirieniiiieieeete ettt 329
16.1.2. uucico Command-ling OPLiONS.........ccouereerierierieniinierieneetene st ee sttt eiee e sieeeens 330

16.2. UUCP Configuration FIleScccceieriirieiiinieieieeteesiteteseetese ettt 331
16.2.1. A Gentle Introduction to Taylor UUCP.......c..ccccceiriiriininiininiiieneeienceeeie e 331
16.2.2. What UUCP Needs to KNOWcccoceeririiieniiiiiiinieieneetcresieeesicetee e 334
16.2.3. STtE NAMING .c.veenviteeiierieriteteete ettt sttt ettt et st e st e besbe et e sbeeaee bt sbeeaesbeeanens 335
16.2.4. Taylor Configuration FIles..........ccceeeiirriierienieeieeeeree ettt s 335
16.2.5. General Configuration Options Using the config File..........cccccevviirniiniiniinnienieenne. 336
16.2.6. How to Tell UUCP About Other Systems Using the sys Filecccccceevveriennennnen. 337
16.2.7. Identifying Available Devices Through the port File..........cccccovivriiniiinienienniennen. 342
16.2.8. How to Dial a Number Using the dial File..........ccccooceeviiiiiiniiinienieeieeeenieeieeeen 343
16.2.9. UUCP OVEI TCP ..ottt sttt sttt st 344
16.2.10. Using a Direct CONNECHIONccvveerueeriiiiiieiieniieeieesitestteeteeieesieesitesseebeesinesseensees 345

16.3. Controlling Access to UUCP FEatures.........ccccuevueeiiriienienieeiteniteeieeieesieesiee st esveesee e ens 346
16.3.1. Command EXECULIONcc.eoieiiririiiiniieiitieiec ettt st 346
16.3.2. File TranSTerscoeevveriiieiiieieee ettt sttt et s 346
16.3.3. FOrWarding......cccuiouieiiiiiieiieiieictt ettt ettt s eanens 347

16.4. Setting Up Your System for Dialing In.........cccooiiiiiiiiiiiininiiceceee s 348
16.4.1. Providing UUCP ACCOUNLS......c..oouiriiriirieieniieietieeete ettt 348
16.4.2. Protecting Yourself Against SWindIers............cccoouieiiiininiininiiiienieee e 349
16.4.3. Be Paranoid: Call Sequence Checks..........c.ccoeoiiiiiiiiininiiiiiiciccecccece e 350
16.4.4. Anonymous UUCP ... 351

16.5. UUCP LOW-LeVel ProtOCOLScc.ceiiiiiitieiieiieieee ettt s 351
16.5.1. ProtOCOL OVEIVIEWcouiiieiitieieiteiiete ettt ettt et sae et sbesat e tesbeeseesaeeseenaeseeeneans 352
16.5.2. Tuning the Transmission Protocol...........ccccoiieiiiiinieniiieeieeeeeeee e 353
16.5.3. Selecting Specific ProtOCOLScc.eiiiriiiiiieiicieeeeee et 354

16.6. TroUDIESROOTINGeotiiieiiiieierieet ettt ettt st et b et e e eaeeeesaeeneens 354
16.6.1. uucico Keeps Saying “Wrong Time to Call”.........cccoviririininiininieienceeeeeee 355
16.6.2. uucico Complains That the Site Is Already Locked........cccooevieieniniieninienincnee 355
16.6.3. You Can Connect to the Remote Site, but the Chat Script Failscccccocerenennen. 355
16.6.4. Your Modem Does NOt Dial.......cccocieriiiiiiniiiiiiiieineeteesiteesicete et 355
16.6.5. Your Modem Tries to Dial but Doesn’t Get OUtccceeveerereenieneeieneneeneneeene 355

viii

16.6.6. Login Succeeds, but the Handshake Failscccccoovieniiiiiiniiiniiniicecieneeiee, 356

16.7. Log Files and DebuggIngccccuevueiiiiiiiiniiiiiiiiiiiiciciccccecne et 356
17. Electronic Mail 359
17.1. What Is @ Mail MESSAZETcocveriiieiiniieiiniieiete ettt sttt e ae et s 360
17.2. How Is Mail DEIIVETEAYcoouviriiiiiiiiiiieeieeit ettt sttt st 362
17.3. EMATL AQATESSES ...veenneienieeiiiniieeieeieesite ettt ettt et ettt st st e s bt e st esate e bt e sbtesateebeesaaesaeeens 363
1731 REC-822 ottt ettt sttt s sttt ene 363
17.3.2. Obsolete Mail FOrmALtscoceerieriiiiiiiiiieeieeeeec ettt 363
17.3.3. Mixing Different Mail FOrmatsccocoeieiiriieiinieeceeeseee e 364

17.4. How Does Mail Routing WOTK?..........coeeiiirieiiieeieeeiteie ettt 365
17.4.1. Mail Routing on the INErnetccooerierieiirierieiee et 365
17.4.2. Mail Routing in the UUCP WOrldccooiiiiiiiiiiiiiieeeeeeeeeee e 366
17.4.3. Mixing UUCP and RFC-822.......cc.ccecirimiminiieieieinieesieseeeeeeeee et 367

17.5. CONfIGUIING @M ..ttt ettt st ettt e e b e eesbeeneens 370
17.5.1. Global €lm OPLIONS. ...c..eeuieiiriieieiieiieie ettt ettt sttt sbt e te sttt ebeenaesbeeneens 371
17.5.2. National Character SetSc..cecuererieririerienieeienieeeete ettt sttt et e s 371

18. Sendmail 374
18.1. Introduction to SENAMAILcceeviviiiiiiiiiiiiiiieie e 374
18.2. Installing SENAMAILcc.eeviiriiiiiniiiiierieeeceee ettt s s 374
18.3. Overview of Configuration FilesS..........cceecueeriiiiieriiiniieiieriecie ettt 375
18.4. The sendmail.cf and sendmail.mc Filesccccooiriininiiiiiniiniiiniiceciceeece e 375
18.4.1. Two Example sendmail.mcC FIles.........coovuieniiiiiiiiiiiiienieeieeecte e 376
18.4.2. Typically Used sendmail.mc Parameters............coceeveerieriieenieenienieeieeieesieeieeneen 377

18.5. Generating the sendmail.Cf FIleooviiiiiiiiiiiiiiieeeee e 381
18.6. Interpreting and Writing ReWrite RUIEScccceviiriiiiiiiiniiiieiieteteceeeeee e 381
18.6.1. sendmail.cf R and S Commands..........cc.ceceeirienirieneniniieneneeeeneeeee e 382
18.6.2. Some Useful Macro Definitionscoceecveeririenirienienenieieneeeenre e sieerenieeenenne 382
18.6.3. The Lefthand Sideccccouirieiiiniiiiniiiiiieecc et 382
18.6.4. The Righthand Sideccccoeeiiiriiiiiiniiiiiiecieeccc et 383
18.6.5. A Simple Rule Pattern EXample...........cocooeiiiiiiiiniiiiniiincecceeceece e 384
18.6.6. RUIESEL SEIMANTICS......eeveiiieiiieiieiierite ettt ettt ettt st ettt e st e eae e b e nae 385

18.7. Configuring sendmail OPHONScceeieiiiriieiiiniiiieiereeiee ettt enens 387
18.8. Some Useful sendmail CONfigUurations...........ccccoeeierieriecieniieiieniiieereseerese e 389
18.8.1. Trusting Users to Set the From: Field ..o 389
18.8.2. Managing Mail ALIASes........cc.cecueriiieriiiiiieiicieieeeeee et 389
18.8.3. Using @ SmaArt HOSE.....c.cociruiriiriiiiieieiiiicrenteetetet ettt 390
18.8.4. Managing Unwanted or Unsolicited Mail (Spam)cccecevvevvevenenrenenenenieneennens 392
18.8.5. Configuring Virtual Email HOStINGc.ccccoviriivieiiiiiinininieniccietecnesereeceeeenns 395

18.9. Testing YOour CONfIGUIALIONc..eoveieieuieiirtinienteeeiee ettt ettt st saesne s eneneenens 397
18.10. RUNNING SENAMAIL ..ottt st sttt et e e saeeee b enaens 401
18.11. Tips @Nd TIICKS ...eutetiiieiieiiee ettt sttt sttt b e b 402
18.11.1. Managing the Mail SPOOL.........ccceriiriiiiirieniiieeetee ettt 402
18.11.2. Forcing a Remote Host to Process its Mail QUeue...........cccceeeeveneeiincneenencnnene 403
18.11.3. Analyzing Mail StatiStICSccuevirieriiriiienieiienieeeete ettt 403

19. Getting EximUp and Running

19.1. RUNNING EXIM c.tiiiiiiiiiiiiieiiee ettt ettt et et st e bt e sate st ebeesaaesaneens
19.2. If Your Mail Doesn’t Get ThroUgh.........c.eecuiiiiiiiiriiiiienieeeeeeteeee ettt
19.3. ComPiling EXIM....coouiiiiiiiiiiieiieeieesiee ettt sttt ettt st beesate st e e beesaeesaneens
19.4. Mail DEliVery MOGEScc.ooieviiriiiieiiniieieniieteie ettt sttt et s
19.5. Miscellaneous CONfig OPLIONScc.ceoveriieiiriieiiniieieientetete ettt ae e ene e eanens
19.6. Message Routing and DELIVETYc..cocoeciiriiiiriiiiiienicieeeece e s
19.6.1. ROULING MESSAZES......covemeeniiiiiiiiieieeie ettt et et et e e e s sne e sne et eae e enens
19.6.2. Delivering Messages to Local Addresses..........cooveevinieiiciiniccenieceeecie e
19.6.3. ATHaS FIIES ... e s
19.6.4. MaIlING LSS ..coveruiiiieieieiieiietesteteteieet et sttt et et eb et s et ne e eneeneas
19.7. Protecting Against Mail SPamLcc.ccuevriririniinieieiicnteteeeee ettt
1O.8. UUCP SEUUP ...c.evitiieieieiieeitt ettt ettt sttt sttt a ettt et et ae et s enneneeneas

20. Netnews

20.1. USENEt HISTOIY ...c.ueiuiiiieiieieeiiete sttt ettt sttt et st e bt sb et besat et bt eaesbeenaens
20.2. What Is USenet, ANYWAY?.....cccceririiriiriieieeieetenie ettt st ete st sitestesbe e e sbesaee st sbeeaesbeennens
20.3. How Does Usenet Handle NEWS?cvveiiviiviiiiiiiiieiee et eeaee e eeiare e seeaaaee e seaaneas

21. C News

21.1. DElIVEIING INEWS....cuteiieiieiieieeieriteitenteett ettt ettt ettt ettt et et st e b sb et e st sbe e bt sbeenaesbeennens
21.2. INSTAITATION .c..ttetieeieeiie ettt ettt ettt et e st e bt ebeesebeeabeesbeesaaessbesaseenbaesssesaseenseensaennseans
21.3. ThE SYS FILE .eetieieeiie ettt st ettt e s e st e et e e bt e sabesateenbeenanesaneens
21.4. The ACHIVE FIl ...cecuiiiiieiieiecit ettt ettt s e st et e baesateeateebeesaaesaneens
21.5. ATtCIE BALCRINGeeviiiiiieiiecit ettt ettt st st et e st st e ebeesaaesaneea
21.6. EXPITING NEWS....eeiuiiiiieiieiieeite ettt ettt ettt et et e st e st e e bt e sbaesabesateebeesabesaseebeessaesaneens
21.7. MISClIaNEOUS FIlES....cccuiiiuiiiiiiiiiiiieeiit ettt st sttt ettt s beesaeesaneen
21.8. CONLTOL MESSAZES ...cnvveeuvieiieniieeiiesitesite et esteesttesate e bt esbeesatesabeebeesbtesabesateesbeesabesaseebeessaesaneens

21.8.1. The CanCel MESSAZE.....cccuverueriieriieniieeitesttesite sttt et sit e sttt e sbeesabeebe e beesabesaseeabeas

21.8.2. NEWZIOUP ANd IMNZTOUP.....ceeuvirriertieriierieenteesitesteeteesitesteesbeesteesseesasessseenseesssesssesnseas

21.8.3. The checkgroups MESSAZE......c..cccueruirieruirienieniierentieeereeeeenesieenesreeeetesneesaesaeennens

21.8.4. sendsys, version, and SENAUUNAMEc.eevierierrieirienienieeieeniee e esieeseeeeeeaees
21.9. C News in an NFS ENVITONMENTcccccviieeiiieiiieeeiieeeieeesieeesveeereeseeeeeieeeseeeessseeesnseeennas
21.10. Maintenance Tools and TaSKSccccuiieeiieiiiieeeiieeciie et sree e e e e e

22. NNTP and thenntpd Daemon

22.1. The NINTP PrOtOCOL ...couiiiiiiiiiiieteet ettt ettt et st e
22.1.1. Connecting to the NEWS SEIVETcecueruirierieriieieniieienee ettt
22.1.2. Pushing a News Article ONt0 @ SEIVETccecueiuieieriieieniieiceie ettt
22.1.3. Changing to NNRP Reader Modecoceviiiiiiniiiieniieesceeceee e
22.1.4. Listing AVailable GIOUPS........cceeuiriieieniinteienteetente ettt st ete st siee st sieeneesveenaens
22.1.5. LiSting ACHVE GIOUPS ..uverutenietieiientieiienteeiteniesteententeetteneesteesaesbeestesbesseentesseenaesbeennens
22.1.6. POStING QN ATTICIEeouieiiiiieieniieieieetee sttt sttt et s s
22.1.7. LiSting NEeW ATTICIES....ccouiriiieriiiiiiieieentee sttt sttt s e
22.1.8. Selecting a Group on Which t0 Operate.........c..cecueveeienirienenenienienienieseenie e
22.1.9. Listing Articles in @ GIOUDc..cecueruirieririenieniietenieeitente ettt et eanens
22.1.10. Retrieving an Article Header Onlyccoceveecieniniiininiinenenieneneesiceeenie e
22.1.11. Retrieving an Article Body Only.......cccoocevvieriiiiniieniienieeieecesiee e
22.1.12. Reading an Article from a GroUDc.coveerierieiiiienienie ettt

22.2. Installing the NINTP SETVETcoocieriiiiiiiieiienieeieeee ettt sttt st saae s ea 453

22.3. ReStricting NINTP ACCESS ..cecuviiiieniieniiiiiieiterite sttt ettt ettt s e sttt e bt e sabesateebeesaaesaneens 453

22.4. NNTP AUthOTIZATION ...cveeuviiieiiiieieieeitcieeeeteset ettt ettt ettt eae e ne e esaesaeennens 455

22.5. nntpd Interaction With C NEWScc.cceeiiiiirieiiiniiieieneeteseetere ettt 455

23. Internet News 457
23.1. Some INN INLETNALS ...ceuvieeiiieeiiieeiee ettt et et e e ste e et e esereesnseeessaeeensaeesnsaeessseaennsessnses 457

23.2. Newsreaders and INNccoiooiiiiiiieeie ettt e e ere e st e e et e e snsaeessseeesnseesnns 459

23.3. InStalling ININoiiiiiiee ettt ettt ettt ettt e bese e e e st e ene e aeeneenaesneennens 459

23.4. Configuring INN: the Basic SEUPcccueiirieiiiieieeeee et 460

23.5. INN Configuration FIles.ccooieiiiiiiieiieeee sttt 460
23.5.1. GIObal Parameters.ceeeruiieeiiieeiieeeiieeeieeeeiee et e eetee e teeeereesaaeeseseeesnsaeeenseeenseeas 460

23.5.2. Configuring NEWSZIOUPSccueeueeuiruieienieeiteriesteeienteeseesteeseenaesbeesesteeseentesneeneesseennens 463

23.5.3. Configuring NEeWSTEEAScceiuiriirieieieiee ittt 465

23.5.4. Controlling NewSreader ACCESScecueruirierieriieieniieieneeeeeentesteeeesieeeentesseeneesreenaens 469

23.5.5. EXPiring News ATTCIES ...cc.ceviiitiiiiiiieieie ettt s 472

23.5.6. Handling Control MESSAZEScueruerieriirienieniieienteeiienteeieentesieetesiesiee st sieenaesieenaens 473

23.6. RUNNING ININ ...ttt sttt st eat et bt eaesbeenaens 477

23.7. Managing INN: The ctlinnd Commandccocceeuererieieniniinenieneneeeseetee e e 477
23.7.1. Add @ NEW GIOUP.....cocteriiriieieniieiieneeitente sttt ettt st sttt et saeenaesbeesnens 478

23.7.2. Change @ GIOUPcc.cecteruirterientieiienieeitente sttt ettt ettt estesbeessesbesbee bt saeenaesbeennens 478

23.7.3. REMOVE @ GIOUP ...cuveruiemiiriieieniieitenieeitente ettt sttt ettt st ae st esbe b st et saeenaesueennens 479

23.7.4. RENUMDET & GIOUP ..eouvieriieeiieeiieniienieeieeteesiteseteeteesaeesstesbeeseesseesnsesseenseesssesssesses 479

23.7.5. Allow/Disallow NEWSIEAAETScouereiruirienieriiereniieitenteeieentenieerenieseentesreeneesreennens 480

23.7.6. Reject Newsfeed CONNECHIONSccveriieriierienieeieenieesiteeieeieesieesveeae et esiaessneeneees 480

23.7.7. Allow Newsfeed CONNECLIONScceevueruirierierieieniieienteeeenienieerenieeeesteereeseesreennens 481

23.7.8. DiSable NEWS SEIVET ...cccueruteieiieiiniinienienitetenieeetenteeieenteereete e enesbeeiee st saeenaesueennens 481

23.7.9. ReStart NEWS SEIVETccuerieriiriiriiniinienientete sttt eieeneeeaeesaesieenesbesseentesaeenaesaeennens 481

23.7.10. Display Status of @ NeWSTeed......ccccevviiriiriiniiiiieieiceeecete e 482

23.7.11. DIOP @ NEWSTEEA ...couveiiiiiiiiiieiteete ettt ettt sttt ettt ebees 482

23.7.12. Be@in @ NeWSTeedcoviiiiiiiiiiieeiee ettt 483

23.7.13. Cancel an ATtICIEc.couerierieriiiiiiieiceree ettt st 483

24. Newsreader Configuration 485
24. 1. tin CONfIGUIALIONouiiiiiiiiiiiiiiteietcee ettt ettt eanens 485
24.2.trn CONFIGUIATION ..c..outiiiiiieiieie ettt ettt ene e eanens 486

24.3. NN CONTIGUIALIONetentieiieieetieie ettt te et et e st et e te e bt e te s bt et esseestebesseentesseeneeseeneenaesneennans 487

A. Example Network:The Virtual Brewery 490
A.1. Connecting the Virtual Subsidiary NEtWOTKcccecevirerienieririinineneiereeeeeeeeseseeeeeene 491

B. Useful Cable Configurations 500
B.1. A PLIP Parallel Cablec.cccocoriiiiriiiieiinieeientetetesiteeseete ettt sttt s s 500

B.2. A Serial NULL Modem Cableccceeieiiiriiniiniiienieniteiesicetenteeteie sttt enens 500

C. Linux Network Administrator’s Guide, Second Edition Copyright Information 507
CoL 0. PramDbIcoveiiiiiiiiiieiiecet ettt sttt sttt st s 507

C.2. 1. Applicability and Definitionsc.ceceereeriiiiiieriieniienieeteeree e eteereesieeseeeeeesbeesaeesaeeens 508

C.3. 2. Verbatim COPYINEZ....ccceerieriiriiienienieeieesieesttesteesteesteessteeseesseesssesssesseesseessesssesssesssaessesns 509

C.4. 3. Copying i QUANTILY «..veevurerrieieerieeieeieesieerteesteesteesteesiteesteeteessaesasesaseesseesssesasesnsesssaesnsenns 509

C.5. 4. MOQIICALIONS ..c.eveniiiieiietteierec ettt sttt ettt b e st sbe et e besaeenesaeemaesueennens 510

Xi

C.6. 5. Combining DOCUMENLScc.ceeiuierieriiiiienitentie st esieenteesteeteesteestesbesbeesbeesasesateenseesseessneens 511

C.7. 6. Collections Of DOCUIMENLScccvieeriiiieiirieiiieeeiieesieeesieeesveeesebeeevaeeeaeeessaeesssesesssesssnes 512
C.8. 7. Aggregation with Independent WOTKScccovuiiriiiriiniiniiiiienieeeeeeete st 512
(O T T b 21 1 1 -V (o) s DS SRPPSRPR 512
C.10. 9. TerMINATION.eceiiiieiiieesitieeeteeeteeeiteeetteesteeesaseeesbeeessseeaseseesssaesssseesssseesssseesssesssssessnsses 512
C.11. 10. Future Revisions Of thiS LLICENSEccccvieiieiiiriieieeiiieee ettt eeerre e e e 513
D. SAGE: The SystemAdministrators Guild 514
Index 515

Xii

List of Tables

2-1. IP Address Ranges Reserved for Private USe.........ccoieieriiienieiiiieiieeeeeee e 18
4-1. setserial Command-Line Parameters...........ccceriiieriiiirieninieienee ettt 50
4-2. stty Flags Most Relevant to Configuring Serial Devices.........cccooeeviririeninieninieieneeeneeeeieeene 63
7-1. Linux SHp-Line DISCIPINEScovuiriiriiiiiiiiiiiieiietee ettt ettt 131
7-2. fetc/diphosts Field DeSCIIPtIONcevueriiiiriirieiieiteie sttt sttt sttt st sae e 144
9-1. Common Netmask Bit VAIUEScocoviiiiiiiiiiiiiiieie ettt s 190
9-2. ICMP Datagram TYPEScc.eeueeiiriirierieniietenteeitete ettt sttt st et sttt sbe et e tesbteae s b estenaesmeenaesbeennens 197
9-3. Suggested Uses for TOS BItmasKs.......c..ccoueruerieriirieniineeienienieieeicete ettt ettt sae e eanens 218
13-1. Some Standard NIS Maps and Corresponding Filesc..cccceoererviinenieniinienninineeneneeieneeeenne 268
15-1. XNS, Novell, and TCP/IP Protocol RelationShipsccccueriirrieerieniinieerieeniesieeieeiee e sve e 292
15-2. ncpmount CommMAaNd ATZUIMENESeevuveeieeiieriienieeteerteesitesteeseessteseresseesseesseessessseesseesssessesnsees 301
15-3. Linux Bindery Manipulation TOOIScccceevuierierieriiieiienienie ettt sttt st eeeas 315
15-4. nprint Command-Line OPLIONScccueerieriieiriieniieniesiteiteste sttt esieestesbeeieesbeesbeeseebeesssesasesnseas 319

Xiil

Preface

The Internet is now a household term in many countries. With otherwise serious people beginning to
joyride along the Information Superhighway, computer networking seems to be moving toward the status
of TV sets and microwave ovens. The Internet has unusually high media coverage, and social science
majors are descending on Usenet newsgroups, online virtual reality environments, and the Web to
conduct research on the new “Internet Culture.”

Of course, networking has been around for a long time. Connecting computers to form local area
networks has been common practice, even at small installations, and so have long-haul links using
transmission lines provided by telecommunications companies. A rapidly growing conglomerate of
world-wide networks has, however, made joining the global village a perfectly reasonable option for
even small non-profit organizations of private computer users. Setting up an Internet host with mail and
news capabilities offering dialup and ISDN access has become affordable, and the advent of DSL
(Digital Subscriber Line) and Cable Modem technologies will doubtlessly continue this trend.

Talking about computer networks often means talking about Unix. Of course, Unix is not the only
operating system with network capabilities, nor will it remain a frontrunner forever, but it has been in the
networking business for a long time, and will surely continue to be for some time to come.

What makes Unix particularly interesting to private users is that there has been much activity to bring
free Unix-like operating systems to the PC, such as 386BSD, FreeBSD, and Linux.

Linux is a freely distributable Unix clone for personal computers. It currently runs on a variety of
machines that includes the Intel family of processors, but also Motorola 680x0 machines, such as the
Commodore Amiga and Apple Macintosh; Sun SPARC and Ultra-SPARC machines; Compaq Alphas;
MIPS; PowerPCs, such as the new generation of Apple Macintosh; and StrongARM, like the rebel.com
Netwinder and 3Com Palm machines. Linux has been ported to some relatively obscure platforms, like
the Fujitsu AP-1000 and the IBM System 3/90. Ports to other interesting architectures are currently in
progress in developers’ labs, and the quest to move Linux into the embedded controller space promises
success.

Linux was developed by a large team of volunteers across the Internet. The project was started in 1990 by
Linus Torvalds, a Finnish college student, as an operating systems course project. Since that time, Linux
has snowballed into a full-featured Unix clone capable of running applications as diverse as simulation
and modeling programs, word processors, speech recognition systems, World Wide Web browsers, and a
horde of other software, including a variety of excellent games. A great deal of hardware is supported,
and Linux contains a complete implementation of TCP/IP networking, including SLIP, PPP, firewalls, a
full IPX implementation, and many features and some protocols not found in any other operating system.
Linux is powerful, fast, and free, and its popularity in the world beyond the Internet is growing rapidly.

The Linux operating system itself is covered by the GNU General Public License, the same copyright
license used by software developed by the Free Software Foundation. This license allows anyone to

Xiv

Preface

redistribute or modify the software (free of charge or for a profit) as long as all modifications and
distributions are freely distributable as well. The term “free software” refers to freedom of application,
not freedom of cost.

1. Purpose and Audience for This Book

This book was written to provide a single reference for network administration in a Linux environment.
Beginners and experienced users alike should find the information they need to cover nearly all
important administration activities required to manage a Linux network configuration. The possible
range of topics to cover is nearly limitless, so of course it has been impossible to include everything there
is to say on all subjects. We’ve tried to cover the most important and common ones. We’ve found that
beginners to Linux networking, even those with no prior exposure to Unix-like operating systems, have
found this book good enough to help them successfully get their Linux network configurations up and
running and get them ready to learn more.

There are many books and other sources of information from which you can learn any of the topics
covered in this book (with the possible exception of some of the truly Linux-specific features, such as the
new Linux firewall interface, which is not well documented elsewhere) in greater depth. We’ve provided
a bibliography for you to use when you are ready to explore more.

2. Sources of Information

If you are new to the world of Linux, there are a number of resources to explore and become familiar
with. Having access to the Internet is helpful, but not essential.

Linux Documentation Project guides

The Linux Documentation Project is a group of volunteers who have worked to produce
books (guides), HOWTO documents, and manual pages on topics ranging from installation to
kernel programming. The LDP works include:

Linux Installation and Getting Started

By Matt Welsh, et al. This book describes how to obtain, install, and use Linux. It includes an
introductory Unix tutorial and information on systems administration, the X Window System,
and networking.

Linux System Administrators Guide

By Lars Wirzenius and Joanna Oja. This book is a guide to general Linux system
administration and covers topics such as creating and configuring users, performing system
backups, configuration of major software packages, and installing and upgrading software.

XV

Preface

Linux System Adminstration Made Easy
By Steve Frampton. This book describes day-to-day administration and maintenance issues of
relevance to Linux users.
Linux Programmers Guide
By B. Scott Burkett, Sven Goldt, John D. Harper, Sven van der Meer, and Matt Welsh. This
book covers topics of interest to people who wish to develop application software for Linux.
The Linux Kernel
By David A. Rusling. This book provides an introduction to the Linux Kernel, how it is
constructed, and how it works. Take a tour of your kernel.
The Linux Kernel Module Programming Guide

By Ori Pomerantz. This guide explains how to write Linux kernel modules.

More manuals are in development. For more information about the LDP you should consult their
World Wide Web server at http://www.linuxdoc.org/ or one of its many mirrors.

HOWTO documents

The Linux HOWTOs are a comprehensive series of papers detailing various aspects of the
system—such as installation and configuration of the X Window System software, or how to write
in assembly language programming under Linux. These are generally located in the HOWTO
subdirectory of the FTP sites listed later, or they are available on the World Wide Web at one of the
many Linux Documentation Project mirror sites. See the Bibliography at the end of this book, or the
file HowTO-INDEX for a list of what’s available.

You might want to obtain the Installation HOWTO, which describes how to install Linux on your
system; the Hardware Compatibility HOWTO, which contains a list of hardware known to work
with Linux; and the Distribution HOWTO, which lists software vendors selling Linux on diskette
and CD-ROM.

The bibliography of this book includes references to the HOWTO documents that are related to
Linux networking.

Linux Frequently Asked Questions

The Linux Frequently Asked Questions with Answers (FAQ) contains a wide assortment of questions
and answers about the system. It is a must-read for all newcomers.

2.1. Documentation Available via FTP

xvi

Preface

If you have access to anonymous FTP, you can obtain all Linux documentation listed above from various
sites, including metalab.unc.edu:/pub/Linux/docs and tsx-11.mit.edu:/pub/linux/docs.

These sites are mirrored by a number of sites around the world.

2.2. Documentation Available via WWW

There are many Linux-based WWW sites available. The home site for the Linux Documentation Project
can be accessed at http://www.linuxdoc.org/.

The Open Source Writers Guild (OSWG) is a project that has a scope that extends beyond Linux. The
OSWG, like this book, is committed to advocating and facilitating the production of OpenSource
documentation. The OSWG home site is at http://www.oswg.org:8080/oswg.

Both of these sites contain hypertext (and other) versions of many Linux related documents.

2.3. Documentation Available Commercially

A number of publishing companies and software vendors publish the works of the Linux Documentation
Project. Two such vendors are:

Specialized Systems Consultants, Inc. (SSC)
http://www.ssc.com/

P.O. Box 55549 Seattle, WA 98155-0549
1-206-782-7733

1-206-782-7191 (FAX)

sales@ssc.com

and:

Linux Systems Labs
http://www.lsl.com/

18300 Tara Drive

Clinton Township, MI 48036
1-810-987-8807
1-810-987-3562 (FAX)
sales@Isl.com

Both companies sell compendiums of Linux HOWTO documents and other Linux documentation in
printed and bound form.

xvii

Preface

O’Reilly & Associates publishes a series of Linux books. This one is a work of the Linux Documentation
Project, but most have been independently authored. Their range includes:

Running Linux
An installation and user guide to the system describing how to get the most out of personal
computing with Linux.

Learning Debian GNU/Linux

Learning Red Hat Linux
More basic than Running Linux, these books contain popular distributions on CD-ROM and offer
robust directions for setting them up and using them.

Linux in a Nutshell

Another in the successful "in a Nutshell" series, this book focuses on providing a broad reference
text for Linux.

2.4. Linux Journal and Linux Magazine

Linux Journal and Linux Magazine are monthly magazines for the Linux community, written and
published by a number of Linux activists. They contain articles ranging from novice questions and
answers to kernel programming internals. Even if you have Usenet access, these magazines are a good
way to stay in touch with the Linux community.

Linux Journal is the oldest magazine and is published by S.S.C. Incorporated, for which details were
listed previously. You can also find the magazine on the World Wide Web at
http://www.linuxjournal.com/.

Linux Magazine is a newer, independent publication. The home web site for the magazine is
http://www.linuxmagazine.com/.

2.5. Linux Usenet Newsgroups

If you have access to Usenet news, the following Linux-related newsgroups are available:

comp.os.linux.announce

A moderated newsgroup containing announcements of new software, distributions, bug reports, and
goings-on in the Linux community. All Linux users should read this group. Submissions may be
mailed to linux-announce @news.ornl.gov.

XViii

Preface

comp.os.linux.help

General questions and answers about installing or using Linux.

comp.os.linux.admin

Discussions relating to systems administration under Linux.

comp.os.linux.networking

Discussions relating to networking with Linux.

comp.os.linux.development

Discussions about developing the Linux kernel and system itself.

comp.os.linux.misc

A catch-all newsgroup for miscellaneous discussions that don’t fall under the previous categories.

There are also several newsgroups devoted to Linux in languages other than English, such as
fr.comp.os.linux in French and de.comp.os.linux in German.

2.6. Linux Mailing Lists

There is a large number of specialist Linux mailing lists on which you will find many people willing to
help with questions you might have.

The best-known of these are the lists hosted by Rutgers University. You may subscribe to these lists by
sending an email message formatted as follows:

To: majordomo@vger.rutgers.edu

Subject: anything at all

Body:

subscribe listname

Some of the available lists related to Linux networking are:

linux-net

Discussion relating to Linux networking

linux-ppp

Discussion relating to the Linux PPP implementation

Xix

Preface

linux-kernel

Discussion relating to Linux kernel development

2.7. Online Linux Support

There are many ways of obtaining help online, where volunteers from around the world offer expertise
and services to assist users with questions and problems.

The OpenProjects IRC Network is an IRC network devoted entirely to Open Projects—Open Source and
Open Hardware alike. Some of its channels are designed to provide online Linux support services. IRC
stands for Internet Relay Chat, and is a network service that allows you to talk interactively on the
Internet to other users. IRC networks support multiple channels on which groups of people talk.
Whatever you type in a channel is seen by all other users of that channel.

There are a number of active channels on the OpenProjects IRC network where you will find users 24
hours a day, 7 days a week who are willing and able to help you solve any Linux problems you may
have, or just chat. You can use this service by installing an IRC client like irc-1I, connecting to
servername irc.openprojects.org:6667, and joining the #1inpeople channel.

2.8. Linux User Groups

Many Linux User Groups around the world offer direct support to users. Many Linux User Groups
engage in activities such as installation days, talks and seminars, demonstration nights, and other
completely social events. Linux User Groups are a great way of meeting other Linux users in your area.
There are a number of published lists of Linux User Groups. Some of the better-known ones are:

Groups of Linux Users Everywhere
http://www.ssc.com/glue/groups/

LUG list project
http://www.nllgg.nl/lugww/

LUG registry

http://www.linux.org/users/

2.9. Obtaining Linux

XX

Preface

There is no single distribution of the Linux software; instead, there are many distributions, such as
Debian, RedHat, Caldera, Corel, SuSE, and Slackware. Each distribution contains everything you need to
run a complete Linux system: the kernel, basic utilities, libraries, support files, and applications software.

Linux distributions may be obtained via a number of online sources, such as the Internet. Each of the
major distributions has its own FTP and web site. Some of these sites are:

Caldera

http://www.caldera.com/ftp://ftp.caldera.com/

Corel

http://www.corel.com/ftp://ftp.corel.com/

Debian

http://www.debian.org/ftp://ftp.debian.org/

RedHat

http://www.redhat.com/ftp://ftp.redhat.com/

Slackware

http://www.slackware.com/ftp://ftp.slackware.com/

SuSE

http://www.suse.com/ftp://ftp.suse.com/

Many of the popular general FTP archive sites also mirror various Linux distributions. The best-known
of these sites are:

metalab.unc.edu:/pub/Linux/distributions/
ftp.funet.fi:/pub/Linux/mirrors/
tsx-11.mit.edu:/pub/linux/distributions/
mirror.aarnet.edu.au:/pub/linux/distributions/

XXi

Preface

Many of the modern distributions can be installed directly from the Internet. There is a lot of software to
download for a typical installation, though, so you’d probably want to do this only if you have a
high-speed, permanent network connection, or if you just need to update an existing installation.'

Linux may be purchased on CD-ROM from an increasing number of software vendors. If your local
computer store doesn’t have it, perhaps you should ask them to stock it! Most of the popular distributions
can be obtained on CD-ROM. Some vendors produce products containing multiple CD-ROMs, each of
which provides a different Linux distribution. This is an ideal way to try a number of different
distributions before you settle on your favorite one.

3. File System Standards

In the past, one of the problems that afflicted Linux distributions, as well as the packages of software
running on Linux, was the lack of a single accepted filesystem layout. This resulted in incompatibilities
between different packages, and confronted users and administrators with the task of locating various
files and programs.

To improve this situation, in August 1993, several people formed the Linux File System Standard Group
(FSSTND). After six months of discussion, the group created a draft that presents a coherent file sytem
structure and defines the location of the most essential programs and configuration files.

This standard was supposed to have been implemented by most major Linux distributions and packages.
It is a little unfortunate that, while most distributions have made some attempt to work toward the
FSSTND, there is a very small number of distributions that has actually adopted it fully. Throughout this
book, we will assume that any files discussed reside in the location specified by the standard; alternative
locations will be mentioned only when there is a long tradition that conflicts with this specification.

The Linux FSSTND continued to develop, but was replaced by the Linux File Hierarchy Standard (FHS)
in 1997. The FHS addresses the multi-architecture issues that the FSSTND did not. The FHS can be
obtained from the Linux documentation directory of all major Linux FTP sites and their mirrors, or at its
home site at http://www.pathname.com/fhs/. Daniel Quinlan, the coordinator of the FHS group, can be
reached at quinlan @transmeta.com.

4. Standard Linux Base

The vast number of different Linux distributions, while providing lots of healthy choice for Linux users,
has created a problem for software developers—particularly developers of non-free software.

Each distribution packages and supplies certain base libraries, configuration tools, system applications,
and configuration files. Unfortunately, differences in their versions, names, and locations make it very

xxii

Preface

difficult to know what will exist on any distribution. This makes it hard to develop binary applications
that will work reliably on all Linux distribution bases.

To help overcome this problem, a new project sprang up called the “Linux Standard Base.” It aims to
describe a standard base distribution that complying distributions will use. If a developer designs an
application to work against the standard base platform, the application will work, and be portable to, any
complying Linux distribution.

You can find information on the status of the Linux Standard Base project at its home web site at
http://www.linuxbase.org/.

If you’re concerned about interoperability, particularly of software from commercial vendors, you should
ensure that your Linux distribution is making an effort to participate in the standardization project.

5. About This Book

When Olaf joined the Linux Documentation Project in 1992, he wrote two small chapters on UUCP and
smail, which he meant to contribute to the System Administrator’s Guide. Development of TCP/IP
networking was just beginning, and when those “small chapters” started to grow, he wondered aloud
whether it would be nice to have a Networking Guide. “Great!” everyone said. “Go for it!” So he went
for it and wrote the first version of the Networking Guide, which was released in September 1993.

Olaf continued work on the Networking Guide and eventually produced a much enhanced version of the
guide. Vince Skahan contributed the original sendmail mail chapter, which was completely replaced in
this edition because of a new interface to the sendmail configuration.

The version of the guide that you are reading now is a revision and update prompted by O’Reilly &
Associates and undertaken by Terry Dawson.”? Terry has been an amateur radio operator for over 20 years
and has worked in the telecommunications industry for over 15 of those. He was co-author of the original
NET-FAQ, and has since authored and maintained various networking-related HOWTO documents.
Terry has always been an enthusiastic supporter of the Network Administrators Guide project, and added
a few new chapters to this version describing features of Linux networking that have been developed
since the first edition, plus a bunch of changes to bring the rest of the book up to date.

The exim chapter was contributed by Philip Hazel,’ who is a lead developer and maintainer of the
package.

The book is organized roughly along the sequence of steps you have to take to configure your system for
networking. It starts by discussing basic concepts of networks, and TCP/IP-based networks in particular.
It then slowly works its way up from configuring TCP/IP at the device level to firewall, accounting, and
masquerade configuration, to the setup of common applications such as rlogin and friends, the Network
File System, and the Network Information System. This is followed by a chapter on how to set up your

XXiil

Preface

machine as a UUCP node. Most of the remaining sections is dedicated to two major applications that run
on top of TCP/IP and UUCP: electronic mail and news. A special chapter has been devoted to the IPX
protocol and the NCP filesystem, because these are used in many corporate environments where Linux is
finding a home.

The email part features an introduction to the more intimate parts of mail transport and routing, and the
myriad of addressing schemes you may be confronted with. It describes the configuration and
management of exim, a mail transport agent ideal for use in most situations not requiring UUCP, and
sendmail, which is for people who have to do more complicated routing involving UUCP.

The news part gives you an overview of how Usenet news works. It covers INN and C News, the two
most widely used news transport software packages at the moment, and the use of NNTP to provide
newsreading access to a local network. The book closes with a chapter on the care and feeding of the
most popular newsreaders on Linux.

Of course, a book can never exhaustively answer all questions you might have. So if you follow the
instructions in this book and something still does not work, please be patient. Some of your problems
may be due to mistakes on our part (see the section Section 9", later in this Preface), but they also may be
caused by changes in the networking software. Therefore, you should check the listed information
resources first. There’s a good chance that you are not alone with your problems, so a fix or at least a
proposed workaround is likely to be known. If you have the opportunity, you should also try to get the
latest kernel and network release from one of the Linux FTP sites or a BBS near you. Many problems are
caused by software from different stages of development, which fail to work together properly. After all,
Linux is a “work in progress.”

6. The Official Printed Version

In Autumn 1993, Andy Oram, who had been around the LDP mailing list from almost the very
beginning, asked Olaf about publishing this book at O’Reilly & Associates. He was excited about this
book, never having imagined that it would become this successful. He and Andy finally agreed that
O’Reilly would produce an enhanced Official Printed Version of the Networking Guide, while Olaf
retained the original copyright so that the source of the book could be freely distributed. This means that
you can choose freely: you can get the various free forms of the document from your nearest Linux
Documentation Project mirror site and print it out, or you can purchase the official printed version from
O’Reilly.

Why, then, would you want to pay money for something you can get for free? Is Tim O’Reilly out of his
mind for publishing something everyone can print and even sell themselves?* Is there any difference
between these versions?

9 ¢

The answers are “it depends,” “no, definitely not,” and “yes and no.” O’Reilly & Associates does take a
risk in publishing the Networking Guide, and it seems to have paid off for them (they’ve asked us to do it
again). We believe this project serves as a fine example of how the free software world and companies

XXV

Preface

can cooperate to produce something both can benefit from. In our view, the great service O’Reilly is
providing to the Linux community (apart from the book becoming readily available in your local
bookstore) is that it has helped Linux become recognized as something to be taken seriously: a viable
and useful alternative to other commercial operating systems. It’s a sad technical bookstore that doesn’t
have at least one shelf stacked with O’Reilly Linux books.

Why are they publishing it? They see it as their kind of book. It’s what they’d hope to produce if they
contracted with an author to write about Linux. The pace, level of detail, and style fit in well with their
other offerings.

The point of the LDP license is to make sure no one gets shut out. Other people can print out copies of
this book, and no one will blame you if you get one of these copies. But if you haven’t gotten a chance to
see the O’Reilly version, try to get to a bookstore or look at a friend’s copy. We think you’ll like what
you see, and will want to buy it for yourself.

So what about the differences between the printed and online versions? Andy Oram has made great
efforts at transforming our ramblings into something actually worth printing. (He has also reviewed a
few other books produced by the Linux Documentation Project, contributing whatever professional skills
he can to the Linux community.)

Since Andy started reviewing the Networking Guide and editing the copies sent to him, the book has
improved vastly from its original form, and with every round of submission and feedback it improves
again. The opportunity to take advantage of a professional editor’s skill is one not to be wasted. In many
ways, Andy’s contribution has been as important as that of the authors. The same is also true of the
copyeditors, who got the book into the shape you see now. All these edits have been fed back into the
online version, so there is no difference in content.

Still, the O’Reilly version will be different. It will be professionally bound, and while you may go to the
trouble to print the free version, it is unlikely that you will get the same quality result, and even then it is
more unlikely that you’ll do it for the price. Secondly, our amateurish attempts at illustration will have
been replaced with nicely redone figures by O’Reilly’s professional artists. Indexers have generated an
improved index, which makes locating information in the book a much simpler process. If this book is
something you intend to read from start to finish, you should consider reading the official printed version.

7. Overview

Chapter 1, discusses the history of Linux and covers basic networking information on UUCP, TCP/IP,
various protocols, hardware, and security. The next few chapters deal with configuring Linux for TCP/IP
networking and running some major applications. We examine IP a little more closely in Chapter 2,
before getting our hands dirty with file editing and the like. If you already know how IP routing works
and how address resolution is performed, you can skip this chapter.

XXV

Preface

Chapter 3, deals with very basic configuration issues, such as building a kernel and setting up your
Ethernet card. The configuration of your serial ports is covered separately in Chapter 4, because the
discussion does not apply to TCP/IP networking only, but is also relevant for UUCP.

Chapter 5, helps you set up your machine for TCP/IP networking. It contains installation hints for
standalone hosts with loopback enabled only, and hosts connected to an Ethernet. It also introduces you
to a few useful tools you can use to test and debug your setup. Chapter 6, discusses how to configure
hostname resolution and explains how to set up a name server.

Chapter 7, explains how to establish SLIP connections and gives a detailed reference for dip, a tool that
allows you to automate most of the necessary steps. Chapter 8, covers PPP and pppd, the PPP daemon.

Chapter 9, extends our discussion on network security and describes the Linux TCP/IP firewall and its
configuration tools: ipfwadm, ipchains, and iptables. IP firewalling provides a means of controlling
who can access your network and hosts very precisely.

Chapter 10, explains how to configure IP Accounting in Linux so you can keep track of how much traffic
is going where and who is generating it.

Chapter 11, covers a feature of the Linux networking software called IP masquerade, which allows
whole IP networks to connect to and use the Internet through a single IP address, hiding internal systems
from outsiders in the process.

Chapter 12, gives a short introduction to setting up some of the most important network applications,
such as rlogin, ssh, etc. This chapter also covers how services are managed by the inetd superuser, and
how you may restrict certain security-relevant services to a set of trusted hosts.

Chapter 13, and Chapter 14, discuss NIS and NFS. NIS is a tool used to distribute administative
information, such as user passwords in a local area network. NFS allows you to share filesystems
between several hosts in your network.

In Chapter 15, we discuss the IPX protocol and the NCP filesystem. These allow Linux to be integrated
into a Novell NetWare environment, sharing files and printers with non-Linux machines.

Chapter 16, gives you an extensive introduction to the administration of Taylor UUCP, a free
implementation of the UUCP suite.

The remainder of the book is taken up by a detailed tour of electronic mail and Usenet news. Chapter 17,
introduces you to the central concepts of electronic mail, like what a mail address looks like, and how the
mail handling system manages to get your message to the recipient.

Chapter 18, and Chapter 19, cover the configuration of sendmail and exim, two mail transport agents

XXVi

Preface

you can use for Linux. This book explains both of them, because exim is easier to install for the
beginner, while sendmail provides support for UUCP.

Chapter 20, through Chapter 23, explain the way news is managed in Usenet and how you install and use
C News, nntpd, and INN: three popular software packages for managing Usenet news. After the brief
introduction in Chapter 20, you can read Chapter 21, if you want to transfer news using C News, a
traditional service generally used with UUCP. The following chapters discuss more modern alternatives
to C News that use the Internet-based protocol NNTP (Network News Transfer Protocol). Chapter 22
covers how to set up a simple NNTP daemon, nntpd, to provide news reading access for a local network,
while Chapter 23 describes a more robust server for more extensive NetNews transfers, the InterNet
News daemon (INN). And finally, Chapter 24, shows you how to configure and maintain various
newsreaders.

8. Conventions Used in This Book

All examples presented in this book assume you are using a sh compatible shell. The bash shell is sh
compatible and is the standard shell of all Linux distributions. If you happen to be a csh user, you will
have to make appropriate adjustments.

The following is a list of the typographical conventions used in this book:

Italic

Used for file and directory names, program and command names, command-line options, email
addresses and pathnames, URLSs, and for emphasizing new terms.

Boldface

Used for machine names, hostnames, site names, usernames and IDs, and for occasional emphasis.

Constant Width
Used in examples to show the contents of code files or the output from commands and to indicate
environment variables and keywords that appear in code.

Constant Width Italic

Used to indicate variable options, keywords, or text that the user is to replace with an actual value.

Constant Width Bold

Used in examples to show commands or other text that should be typed literally by the user.

Warning

Text appearing in this manner offers a warning. You can make a mistake here that
hurts your system or is hard to recover from.

XXVii

Preface

9. Submitting Changes

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:

O’Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

You can send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions @oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for future editions. You
can access this page at:

http:/fwww.oreilly.com/catalog/linag2

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

10. Acknowledgments

This edition of the Networking Guide owes almost everything to the outstanding work of Olaf and Vince.
It is difficult to appreciate the effort that goes into researching and writing a book of this nature until
you’ve had a chance to work on one yourself. Updating the book was a challenging task, but with an
excellent base to work from, it was an enjoyable one.

This book owes very much to the numerous people who took the time to proof-read it and help iron out
many mistakes, both technical and grammatical (never knew that there was such a thing as a dangling
participle). Phil Hughes, John Macdonald, and Erik Ratcliffe all provided very helpful (and on the whole,
quite consistent) feedback on the content of the book.

XXViii

Preface

We also owe many thanks to the people at O’Reilly we’ve had the pleasure to work with: Sarah Jane
Shangraw, who got the book into the shape you can see now; Maureen Dempsey, who copyedited the
text; Rob Romano, Rhon Porter, and Chris Reilley, who created all the figures; Hanna Dyer, who
designed the cover; Alicia Cech, David Futato, and Jennifer Niedherst for the internal layout; Lars
Kaufman for suggesting old woodcuts as a visual theme; Judy Hoer for the index; and finally, Tim
O’Reilly for the courage to take up such a project.

We are greatly indebted to Andres Sepulveda, Wolfgang Michaelis, Michael K. Johnson, and all
developers who spared the time to check the information provided in the Networking Guide. Phil
Hughes, John MacDonald, and Eric Ratcliffe contributed invaluable comments on the second edition. We
also wish to thank all those who read the first version of the Networking Guide and sent corrections and
suggestions. You can find a hopefully complete list of contributors in the file Thanks in the online
distribution. Finally, this book would not have been possible without the support of Holger Grothe, who
provided Olaf with the Internet connectivity he needed to make the original version happen.

Olaf would also like to thank the following groups and companies that printed the first edition of the
Networking Guide and have donated money either to him or to the Linux Documentation Project as a
whole: Linux Support Team, Erlangen, Germany; S.u.S.E. GmbH, Fuerth, Germany; and Linux System
Labs, Inc., Clinton Twp., United States, RedHat Software, North Carolina, United States.

Terry thanks his wife, Maggie, who patiently supported him throughout his participation in the project
despite the challenges presented by the birth of their first child, Jack. Additionally, he thanks the many
people of the Linux community who either nurtured or suffered him to the point at which he could

actually take part and actively contribute. “I’ll help you if you promise to help someone else in return.”

10.1. The Hall of Fame

Besides those we have already mentioned, a large number of people have contributed to the Networking
Guide, by reviewing it and sending us corrections and suggestions. We are very grateful.

Here is a list of those whose contributions left a trace in our mail folders.

Al Longyear, Alan Cox, Andres Sepilveda, Ben Cooper, Cameron Spitzer, Colin McCormack, D.J.
Roberts, Emilio Lopes, Fred N. van Kempen, Gert Doering, Greg Hankins, Heiko FEissfeldt, J.P. Szikora,
Johannes Stille, Karl Eichwalder, Les Johnson, Ludger Kunz, Marc van Diest, Michael K. Johnson,
Michael Nebel, Michael Wing, Mitch D’Souza, Paul Gortmaker, Peter Brouwer, Peter Eriksson, Phil
Hughes, Raul Deluth Miller, Rich Braun, Rick Sladkey, Ronald Aarts, Swen Thiilemmler, Terry Dawson,
Thomas Quinot, and Yury Shevchuk.

Notes

1. ... oryou are extremely impatient and know that the 24 hours it might take to download the software

XXIX

Preface

from the Internet is faster than the 72 hours it might take to wait for a CD-ROM to be delivered!
Terry Dawson can be reached at terry @linux.org.au.
Philip Hazel can be reached at ph10@cus.cam.ac.uk.

Note that while you are allowed to print out the online version, you may not run the O’Reilly book
through a photocopier, much less sell any of its (hypothetical) copies.

XXX

Chapter 1. Introduction to Networking

1.1. History

The idea of networking is probably as old as telecommunications itself. Consider people living in the
Stone Age, when drums may have been used to transmit messages between individuals. Suppose
caveman A wants to invite caveman B over for a game of hurling rocks at each other, but they live too far
apart for B to hear A banging his drum. What are A’s options? He could 1) walk over to B’s place, 2) get
a bigger drum, or 3) ask C, who lives halfway between them, to forward the message. The last option is
called networking.

Of course, we have come a long way from the primitive pursuits and devices of our forebears.
Nowadays, we have computers talk to each other over vast assemblages of wires, fiber optics,
microwaves, and the like, to make an appointment for Saturday’s soccer match.' In the following
description, we will deal with the means and ways by which this is accomplished, but leave out the wires,
as well as the soccer part.

We will describe three types of networks in this guide. We will focus on TCP/IP most heavily because it
is the most popular protocol suite in use on both Local Area Networks (LANs) and Wide Area Networks
(WANS), such as the Internet. We will also take a look at UUCP and IPX. UUCP was once commonly
used to transport news and mail messages over dialup telephone connections. It is less common today,
but is still useful in a variety of situations. The IPX protocol is used most commonly in the Novell
NetWare environment and we’ll describe how to use it to connect your Linux machine into a Novell
network. Each of these protocols are networking protocols and are used to carry data between host
computers. We’ll discuss how they are used and introduce you to their underlying principles.

We define a network as a collection of hosts that are able to communicate with each other, often by
relying on the services of a number of dedicated hosts that relay data between the participants. Hosts are
often computers, but need not be; one can also think of X terminals or intelligent printers as hosts. Small
agglomerations of hosts are also called sites.

Communication is impossible without some sort of language or code. In computer networks, these
languages are collectively referred to as protocols. However, you shouldn’t think of written protocols
here, but rather of the highly formalized code of behavior observed when heads of state meet, for
instance. In a very similar fashion, the protocols used in computer networks are nothing but very strict
rules for the exchange of messages between two or more hosts.

1.2. TCP/IP Networks

Modern networking applications require a sophisticated approach to carrying data from one machine to
another. If you are managing a Linux machine that has many users, each of whom may wish to

Chapter 1. Introduction to Networking

simultaneously connect to remote hosts on a network, you need a way of allowing them to share your
network connection without interfering with each other. The approach that a large number of modern
networking protocols uses is called packet-switching. A packet is a small chunk of data that is transferred
from one machine to another across the network. The switching occurs as the datagram is carried across
each link in the network. A packet-switched network shares a single network link among many users by
alternately sending packets from one user to another across that link.

The solution that Unix systems, and subsequently many non-Unix systems, have adopted is known as
TCP/IP. When talking about TCP/IP networks you will hear the term datagram, which technically has a
special meaning but is often used interchangeably with packet. In this section, we will have a look at
underlying concepts of the TCP/IP protocols.

1.2.1. Introduction to TCP/IP Networks

TCP/IP traces its origins to a research project funded by the United States Defense Advanced Research
Projects Agency (DARPA) in 1969. The ARPANET was an experimental network that was converted
into an operational one in 1975 after it had proven to be a success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on the network were
required to use it. When ARPANET finally grew into the Internet (with ARPANET itself passing out of
existence in 1990), the use of TCP/IP had spread to networks beyond the Internet itself. Many companies
have now built corporate TCP/IP networks, and the Internet has grown to a point at which it could almost
be considered a mainstream consumer technology. It is difficult to read a newspaper or magazine now
without seeing reference to the Internet; almost everyone can now use it.

For something concrete to look at as we discuss TCP/IP throughout the following sections, we will
consider Groucho Marx University (GMU), situated somewhere in Fredland, as an example. Most
departments run their own Local Area Networks, while some share one and others run several of them.
They are all interconnected and hooked to the Internet through a single high-speed link.

Suppose your Linux box is connected to a LAN of Unix hosts at the Mathematics department, and its
name is erdos. To access a host at the Physics department, say quark, you enter the following command:

$ rlogin quark.physics
Welcome to the Physics Department at GMU
(ttyg2) login:

At the prompt, you enter your login name, say andres, and your password. You are then given a shell® on
quark, to which you can type as if you were sitting at the system’s console. After you exit the shell, you
are returned to your own machine’s prompt. You have just used one of the instantaneous, interactive
applications that TCP/IP provides: remote login.

Chapter 1. Introduction to Networking

While being logged into quark, you might also want to run a graphical user interface application, like a
word processing program, a graphics drawing program, or even a World Wide Web browser. The X
windows system is a fully network-aware graphical user environment, and it is available for many
different computing systems. To tell this application that you want to have its windows displayed on your
host’s screen, you have to set the DISPLAY environment variable:

S DISPLAY=erdos.maths:0.0
$ export DISPLAY

If you now start your application, it will contact your X server instead of quark’s, and display all its
windows on your screen. Of course, this requires that you have X11 runnning on erdos. The point here is
that TCP/IP allows quark and erdos to send X11 packets back and forth to give you the illusion that
you’re on a single system. The network is almost transparent here.

Another very important application in TCP/IP networks is NFS, which stands for Network File System. It
is another form of making the network transparent, because it basically allows you to treat directory
hierarchies from other hosts as if they were local file systems and look like any other directories on your
host. For example, all users’ home directories can be kept on a central server machine from which all
other hosts on the LAN mount them. The effect is that users can log in to any machine and find
themselves in the same home directory. Similarly, it is possible to share large amounts of data (such as a
database, documentation or application programs) among many hosts by maintaining one copy of the
data on a server and allowing other hosts to access it. We will come back to NFS in Chapter 14.

Of course, these are only examples of what you can do with TCP/IP networks. The possibilities are
almost limitless, and we’ll introduce you to more as you read on through the book.

We will now have a closer look at the way TCP/IP works. This information will help you understand how
and why you have to configure your machine. We will start by examining the hardware, and slowly work
our way up.

1.2.2. Ethernets

The most common type of LAN hardware is known as Ethernet. In its simplest form, it consists of a
single cable with hosts attached to it through connectors, taps, or transceivers. Simple Ethernets are
relatively inexpensive to install, which together with a net transfer rate of 10, 100, or even 1,000
Megabits per second, accounts for much of its popularity.

Ethernets come in three flavors: thick, thin, and twisted pair. Thin and thick Ethernet each use a coaxial
cable, differing in diameter and the way you may attach a host to this cable. Thin Ethernet uses a
T-shaped “BNC” connector, which you insert into the cable and twist onto a plug on the back of your
computer. Thick Ethernet requires that you drill a small hole into the cable, and attach a transceiver using
a “vampire tap.” One or more hosts can then be connected to the transceiver. Thin and thick Ethernet

Chapter 1. Introduction to Networking

cable can run for a maximum of 200 and 500 meters respectively, and are also called 10base-2 and
10base-5. The “base” refers to “baseband modulation” and simply means that the data is directly fed
onto the cable without any modem. The number at the start refers to the speed in Megabits per second,
and the number at the end is the maximum length of the cable in hundreds of metres. Twisted pair uses a
cable made of two pairs of copper wires and usually requires additional hardware known as active hubs.
Twisted pair is also known as 10base-T, the “T” meaning twisted pair. The 100 Megabits per second
version is known as 100base-T.

To add a host to a thin Ethernet installation, you have to disrupt network service for at least a few
minutes because you have to cut the cable to insert the connector. Although adding a host to a thick
Ethernet system is a little complicated, it does not typically bring down the network. Twisted pair
Ethernet is even simpler. It uses a device called a “hub,” which serves as an interconnection point. You
can insert and remove hosts from a hub without interrupting any other users at all.

Many people prefer thin Ethernet for small networks because it is very inexpensive; PC cards come for
as little as US $30 (many companies are literally throwing them out now), and cable is in the range of a
few cents per meter. However, for large-scale installations, either thick Ethernet or twisted pair is more
appropriate. For example, the Ethernet at GMU’s Mathematics Department originally chose thick
Ethernet because it is a long route that the cable must take so traffic will not be disrupted each time a host
is added to the network. Twisted pair installations are now very common in a variety of installations. The
Hub hardware is dropping in price and small units are now available at a price that is attractive to even
small domestic networks. Twisted pair cabling can be significantly cheaper for large installations, and the
cable itself is much more flexible than the coaxial cables used for the other Ethernet systems. The
network administrators in GMU’s mathematics department are planning to replace the existing network
with a twisted pair network in the coming finanical year because it will bring them up to date with
current technology and will save them significant time when installing new host computers and moving
existing computers around.

One of the drawbacks of Ethernet technology is its limited cable length, which precludes any use of it
other than for LANs. However, several Ethernet segments can be linked to one another using repeaters,
bridges, or routers. Repeaters simply copy the signals between two or more segments so that all
segments together will act as if they are one Ethernet. Due to timing requirements, there may not be more
than four repeaters between any two hosts on the network. Bridges and routers are more sophisticated.
They analyze incoming data and forward it only when the recipient host is not on the local Ethernet.

Ethernet works like a bus system, where a host may send packets (or frames) of up to 1,500 bytes to
another host on the same Ethernet. A host is addressed by a six-byte address hardcoded into the firmware
of its Ethernet network interface card (NIC). These addresses are usually written as a sequence of
two-digit hex numbers separated by colons, as in aa:bb:cc:dd:ee:ff.

A frame sent by one station is seen by all attached stations, but only the destination host actually picks it
up and processes it. If two stations try to send at the same time, a collision occurs. Collisions on an
Ethernet are detected very quickly by the electronics of the interface cards and are resolved by the two
stations aborting the send, each waiting a random interval and re-attempting the transmission. You’ll hear
lots of stories about collisions on Ethernet being a problem and that utilization of Ethernets is only about

Chapter 1. Introduction to Networking

30 percent of the available bandwidth because of them. Collisions on Ethernet are a normal
phenomenon, and on a very busy Ethernet network you shouldn’t be surprised to see collision rates of up
to about 30 percent. Utilization of Ethernet networks is more realistically limited to about 60 percent
before you need to start worrying about it.?

1.2.3. Other Types of Hardware

In larger installations, such as Groucho Marx University, Ethernet is usually not the only type of
equipment used. There are many other data communications protocols available and in use. All of the
protocols listed are supported by Linux, but due to space constraints we’ll describe them briefly. Many of
the protocols have HOWTO documents that describe them in detail, so you should refer to those if you're
interested in exploring those that we don’t describe in this book.

At Groucho Marx University, each department’s LAN is linked to the campus high-speed “backbone”
network, which is a fiber optic cable running a network technology called Fiber Distributed Data
Interface (FDDI). FDDI uses an entirely different approach to transmitting data, which basically involves
sending around a number of fokens, with a station being allowed to send a frame only if it captures a
token. The main advantage of a token-passing protocol is a reduction in collisions. Therefore, the
protocol can more easily attain the full speed of the transmission medium, up to 100 Mbps in the case of
FDDI. FDDI, being based on optical fiber, offers a significant advantage because its maximum cable
length is much greater than wire-based technologies. It has limits of up to around 200 km, which makes
it ideal for linking many buildings in a city, or as in GMU’s case, many buildings on a campus.

Similarly, if there is any IBM computing equipment around, an IBM Token Ring network is quite likely
to be installed. Token Ring is used as an alternative to Ethernet in some LAN environments, and offers
the same sorts of advantages as FDDI in terms of achieving full wire speed, but at lower speeds (4 Mbps
or 16 Mbps), and lower cost because it is based on wire rather than fiber. In Linux, Token Ring
networking is configured in almost precisely the same way as Ethernet, so we don’t cover it specifically.

Although it is much less likely today than in the past, other LAN technologies, such as ArcNet and
DECNet, might be installed. Linux supports these too, but we don’t cover them here.

Many national networks operated by Telecommunications companies support packet switching
protocols. Probably the most popular of these is a standard named X.25. Many Public Data Networks,
like Tymnet in the U.S., Austpac in Australia, and Datex-P in Germany offer this service. X.25 defines a
set of networking protocols that describes how data terminal equipment, such as a host, communicates
with data communications equipment (an X.25 switch). X.25 requires a synchronous data link, and
therefore special synchronous serial port hardware. It is possible to use X.25 with normal serial ports if
you use a special device called a PAD (Packet Assembler Disassembler). The PAD is a standalone device
that provides asynchronous serial ports and a synchronous serial port. It manages the X.25 protocol so
that simple terminal devices can make and accept X.25 connections. X.25 is often used to carry other
network protocols, such as TCP/IP. Since IP datagrams cannot simply be mapped onto X.25 (or vice
versa), they are encapsulated in X.25 packets and sent over the network. There is an experimental
implementation of the X.25 protocol available for Linux.

Chapter 1. Introduction to Networking

A more recent protocol commonly offered by telecommunications companies is called Frame Relay. The
Frame Relay protocol shares a number of technical features with the X.25 protocol, but is much more
like the IP protocol in behavior. Like X.25, Frame Relay requires special synchronous serial hardware.
Because of their similarities, many cards support both of these protocols. An alternative is available that
requires no special internal hardware, again relying on an external device called a Frame Relay Access
Device (FRAD) to manage the encapsulation of Ethernet packets into Frame Relay packets for
transmission across a network. Frame Relay is ideal for carrying TCP/IP between sites. Linux provides
drivers that support some types of internal Frame Relay devices.

If you need higher speed networking that can carry many different types of data, such as digitized voice
and video, alongside your usual data, ATM (Asynchronous Transfer Mode) is probably what you’ll be
interested in. ATM is a new network technology that has been specifically designed to provide a
manageable, high-speed, low-latency means of carrying data, and provide control over the Quality of
Service (Q.S.). Many telecommunications companies are deploying ATM network infrastructure because
it allows the convergence of a number of different network services into one platform, in the hope of
achieving savings in management and support costs. ATM is often used to carry TCP/IP. The
Networking-HOWTO offers information on the Linux support available for ATM.

Frequently, radio amateurs use their radio equipment to network their computers; this is commonly
called packet radio. One of the protocols used by amateur radio operators is called AX.25 and is loosely
derived from X.25. Amateur radio operators use the AX.25 protocol to carry TCP/IP and other protocols,
too. AX.25, like X.25, requires serial hardware capable of synchronous operation, or an external device
called a “Terminal Node Controller” to convert packets transmitted via an asynchronous serial link into
packets transmitted synchronously. There are a variety of different sorts of interface cards available to
support packet radio operation; these cards are generally referred to as being “Z8530 SCC based,” and
are named after the most popular type of communications controller used in the designs. Two of the other
protocols that are commonly carried by AX.25 are the NetRom and Rose protocols, which are network
layer protocols. Since these protocols run over AX.25, they have the same hardware requirements. Linux
supports a fully featured implementation of the AX.25, NetRom, and Rose protocols. The
AX25-HOWTO is a good source of information on the Linux implementation of these protocols.

Other types of Internet access involve dialing up a central system over slow but cheap serial lines
(telephone, ISDN, and so on). These require yet another protocol for transmission of packets, such as
SLIP or PPP, which will be described later.

1.2.4. The Internet Protocol

Of course, you wouldn’t want your networking to be limited to one Ethernet or one point-to-point data
link. Ideally, you would want to be able to communicate with a host computer regardless of what type of
physical network it is connected to. For example, in larger installations such as Groucho Marx
University, you usually have a number of separate networks that have to be connected in some way. At
GMU, the Math department runs two Ethernets: one with fast machines for professors and graduates, and
another with slow machines for students. Both are linked to the FDDI campus backbone network.

Chapter 1. Introduction to Networking

This connection is handled by a dedicated host called a gateway that handles incoming and outgoing
packets by copying them between the two Ethernets and the FDDI fiber optic cable. For example, if you
are at the Math department and want to access quark on the Physics department’s LAN from your Linux
box, the networking software will not send packets to quark directly because it is not on the same
Ethernet. Therefore, it has to rely on the gateway to act as a forwarder. The gateway (named sophus) then
forwards these packets to its peer gateway niels at the Physics department, using the backbone network,
with niels delivering it to the destination machine. Data flow between erdos and quark is shown in Figure
1-1.

Figure 1-1. The three steps of sending a datagram from erdos to quark

FOOICampus Hackbona

sophus . nieks

gremmmm e < Wathematics Etharnat |

0 Physics Ethernat *........ .

This scheme of directing data to a remote host is called routing, and packets are often referred to as
datagrams in this context. To facilitate things, datagram exchange is governed by a single protocol that is
independent of the hardware used: IP, or Internet Protocol. In Chapter 2, we will cover IP and the issues
of routing in greater detail.

The main benefit of IP is that it turns physically dissimilar networks into one apparently homogeneous
network. This is called internetworking, and the resulting “meta-network” is called an internet. Note the
subtle difference here between an internet and the Internet. The latter is the official name of one
particular global internet.

Of course, IP also requires a hardware-independent addressing scheme. This is achieved by assigning
each host a unique 32-bit number called the /P address. An IP address is usually written as four decimal
numbers, one for each 8-bit portion, separated by dots. For example, quark might have an IP address of
0x954C0C04, which would be written as 149.76.12.4. This format is also called dotted decimal notation

Chapter 1. Introduction to Networking

and sometimes dotted quad notation. It is increasingly going under the name IPv4 (for Internet Protocol,
Version 4) because a new standard called IPv6 offers much more flexible addressing, as well as other
modern features. It will be at least a year after the release of this edition before IPv6 is in use.

You will notice that we now have three different types of addresses: first there is the host’s name, like
quark, then there are IP addresses, and finally, there are hardware addresses, like the 6-byte Ethernet
address. All these addresses somehow have to match so that when you type rlogin quark, the
networking software can be given quark’s IP address; and when IP delivers any data to the Physics
department’s Ethernet, it somehow has to find out what Ethernet address corresponds to the IP address.

We will deal with these situations in Chapter 2. For now, it’s enough to remember that these steps of
finding addresses are called hostname resolution, for mapping hostnames onto IP addresses, and address
resolution, for mapping the latter to hardware addresses.

1.2.5. IP Over Serial Lines

On serial lines, a “de facto” standard exists known as SLIP, or Serial Line IP. A modification of SLIP
known as CSLIP, or Compressed SLIP, performs compression of IP headers to make better use of the
relatively low bandwidth provided by most serial links. Another serial protocol is PPP, or the
Point-to-Point Protocol. PPP is more modern than SLIP and includes a number of features that make it
more attractive. Its main advantage over SLIP is that it isn’t limited to transporting IP datagrams, but is
designed to allow just about any protocol to be carried across it.

1.2.6. The Transmission Control Protocol

Sending datagrams from one host to another is not the whole story. If you log in to quark, you want to
have a reliable connection between your rlogin process on erdos and the shell process on quark. Thus,
the information sent to and fro must be split up into packets by the sender and reassembled into a
character stream by the receiver. Trivial as it seems, this involves a number of complicated tasks.

A very important thing to know about IP is that, by intent, it is not reliable. Assume that ten people on
your Ethernet started downloading the latest release of Netscape’s web browser source code from GMU’s
FTP server. The amount of traffic generated might be too much for the gateway to handle, because it’s
too slow and it’s tight on memory. Now if you happen to send a packet to quark, sophus might be out of
buffer space for a moment and therefore unable to forward it. IP solves this problem by simply
discarding it. The packet is irrevocably lost. It is therefore the responsibility of the communicating hosts
to check the integrity and completeness of the data and retransmit it in case of error.

This process is performed by yet another protocol, Transmission Control Protocol (TCP), which builds a
reliable service on top of IP. The essential property of TCP is that it uses IP to give you the illusion of a
simple connection between the two processes on your host and the remote machine, so you don’t have to
care about how and along which route your data actually travels. A TCP connection works essentially

Chapter 1. Introduction to Networking

like a two-way pipe that both processes may write to and read from. Think of it as a telephone
conversation.

TCP identifies the end points of such a connection by the IP addresses of the two hosts involved and the
number of a port on each host. Ports may be viewed as attachment points for network connections. If we
are to strain the telephone example a little more, and you imagine that cities are like hosts, one might
compare [P addresses to area codes (where numbers map to cities), and port numbers to local codes
(where numbers map to individual people’s telephones). An individual host may support many different
services, each distinguished by its own port number.

In the rlogin example, the client application (rlegin) opens a port on erdos and connects to port 513 on
quark, to which the rlogind server is known to listen. This action establishes a TCP connection. Using
this connection, rlogind performs the authorization procedure and then spawns the shell. The shell’s
standard input and output are redirected to the TCP connection, so that anything you type to rlogin on
your machine will be passed through the TCP stream and be given to the shell as standard input.

1.2.7. The User Datagram Protocol

Of course, TCP isn’t the only user protocol in TCP/IP networking. Although suitable for applications
like rlogin, the overhead involved is prohibitive for applications like NFS, which instead uses a sibling
protocol of TCP called UDP, or User Datagram Protocol. Just like TCP, UDP allows an application to
contact a service on a certain port of the remote machine, but it doesn’t establish a connection for this.
Instead, you use it to send single packets to the destination service—hence its name.

Assume you want to request a small amount of data from a database server. It takes at least three
datagrams to establish a TCP connection, another three to send and confirm a small amount of data each
way, and another three to close the connection. UDP provides us with a means of using only two
datagrams to achieve almost the same result. UDP is said to be connectionless, and it doesn’t require us
to establish and close a session. We simply put our data into a datagram and send it to the server; the
server formulates its reply, puts the data into a datagram addressed back to us, and transmits it back.
While this is both faster and more efficient than TCP for simple transactions, UDP was not designed to
deal with datagram loss. It is up to the application, a name server for example, to take care of this.

1.2.8. More on Ports

Ports may be viewed as attachment points for network connections. If an application wants to offer a
certain service, it attaches itself to a port and waits for clients (this is also called listening on the port). A
client who wants to use this service allocates a port on its local host and connects to the server’s port on
the remote host. The same port may be open on many different machines, but on each machine only one
process can open a port at any one time.

An important property of ports is that once a connection has been established between the client and the

Chapter 1. Introduction to Networking

server, another copy of the server may attach to the server port and listen for more clients. This property
permits, for instance, several concurrent remote logins to the same host, all using the same port 513. TCP
is able to tell these connections from one another because they all come from different ports or hosts. For
example, if you log in twice to quark from erdos, the first rlogin client will use the local port 1023, and
the second one will use port 1022. Both, however, will connect to the same port 513 on quark. The two
connections will be distinguished by use of the port numbers used at erdos.

This example shows the use of ports as rendezvous points, where a client contacts a specific port to
obtain a specific service. In order for a client to know the proper port number, an agreement has to be
reached between the administrators of both systems on the assignment of these numbers. For services
that are widely used, such as rlogin, these numbers have to be administered centrally. This is done by the
IETF (Internet Engineering Task Force), which regularly releases an RFC titled Assigned Numbers
(RFC-1700). It describes, among other things, the port numbers assigned to well-known services. Linux
uses a file called /etc/services that maps service names to numbers.

It is worth noting that although both TCP and UDP connections rely on ports, these numbers do not
conflict. This means that TCP port 513, for example, is different from UDP port 513. In fact, these ports
serve as access points for two different services, namely rlogin (TCP) and rwho (UDP).

1.2.9. The Socket Library

In Unix operating systems, the software performing all the tasks and protocols described above is usually
part of the kernel, and so it is in Linux. The programming interface most common in the Unix world is
the Berkeley Socket Library. Its name derives from a popular analogy that views ports as sockets and
connecting to a port as plugging in. It provides the bind call to specify a remote host, a transport
protocol, and a service that a program can connect or listen to (using connect, listen, and accept).
The socket library is somewhat more general in that it provides not only a class of TCP/IP-based sockets
(the AF_INET sockets), but also a class that handles connections local to the machine (the AF_UNIX
class). Some implementations can also handle other classes, like the XNS (Xerox Networking System)
protocol or X.25.

In Linux, the socket library is part of the standard 1ibc C library. It supports the AF_INET and
AF_INET6 sockets for TCP/IP and AF_UNIX for Unix domain sockets. It also supports AF_1pPXx for
Novell’s network protocols, AF_x25 for the X.25 network protocol, AF_ATMPVC and AF_ATMSVC for the
ATM network protocol and AF_AX25, AF_NETROM, and AF_ROSE sockets for Amateur Radio protocol
support. Other protocol families are being developed and will be added in time.

1.3. UUCP Networks

Unix-to-Unix Copy (UUCP) started out as a package of programs that transferred files over serial lines,
scheduled those transfers, and initiated execution of programs on remote sites. It has undergone major

10

Chapter 1. Introduction to Networking

changes since its first implementation in the late seventies, but it is still rather spartan in the services it
offers. Its main application is still in Wide Area Networks, based on periodic dialup telephone links.

UUCP was first developed by Bell Laboratories in 1977 for communication between their Unix
development sites. In mid-1978, this network already connected over 80 sites. It was running email as an
application, as well as remote printing. However, the system’s central use was in distributing new
software and bug fixes. Today, UUCP is not confined solely to the Unix environment. There are free and
commercial ports available for a variety of platforms, including AmigaOS, DOS, and Atari’s TOS.

One of the main disadvantages of UUCP networks is that they operate in batches. Rather than having a
permanent connection established between hosts, it uses temporary connections. A UUCP host machine
might dial in to another UUCP host only once a day, and then only for a short period of time. While it is
connected, it will transfer all of the news, email, and files that have been queued, and then disconnect. It
is this queuing that limits the sorts of applications that UUCP can be applied to. In the case of email, a
user may prepare an email message and post it. The message will stay queued on the UUCP host
machine until it dials in to another UUCP host to transfer the message. This is fine for network services
such as email, but is no use at all for services such as rlogin.

Despite these limitations, there are still many UUCP networks operating all over the world, run mainly
by hobbyists, which offer private users network access at reasonable prices. The main reason for the
longtime popularity of UUCP was that it was very cheap compared to having your computer directly
connected to the Internet. To make your computer a UUCP node, all you needed was a modem, a
working UUCP implementation, and another UUCP node that was willing to feed you mail and news.
Many people were prepared to provide UUCP feeds to individuals because such connections didn’t place
much demand on their existing network.

We cover the configuration of UUCP in a chapter of its own later in the book, but we won’t focus on it
too heavily, as it’s being replaced rapidly with TCP/IP, now that cheap Internet access has become
commonly available in most parts of the world.

1.4. Linux Networking

As it is the result of a concerted effort of programmers around the world, Linux wouldn’t have been
possible without the global network. So it’s not surprising that in the early stages of development, several
people started to work on providing it with network capabilities. A UUCP implementation was running
on Linux almost from the very beginning, and work on TCP/IP-based networking started around autumn
1992, when Ross Biro and others created what has now become known as Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work on a new
implementation, rewriting major parts of the code. This project was known as Net-2. The first public
release, Net-2d, was made in the summer of 1993 (as part of the 0.99.10 kernel), and has since been
maintained and expanded by several people, most notably Alan Cox.* Alan’s original work was known as
Net-2Debugged. After heavy debugging and numerous improvements to the code, he changed its name

11

Chapter 1. Introduction to Networking

to Net-3 after Linux 1.0 was released. The Net-3 code was further developed for Linux 1.2 and Linux
2.0. The 2.2 and later kernels use the Net-4 version network support, which remains the standard official
offering today.

The Net-4 Linux Network code offers a wide variety of device drivers and advanced features. Standard
Net-4 protocols include SLIP and PPP (for sending network traffic over serial lines), PLIP (for parallel
lines), IPX (for Novell compatible networks, which we’ll discuss in Chapter 15), Appletalk (for Apple
networks) and AX.25, NetRom, and Rose (for amateur radio networks). Other standard Net-4 features
include IP firewalling, IP accounting (discussed later in Chapter 9 and Chapter 10), and IP Masquerade
(discussed later in Chapter 11. IP tunnelling in a couple of different flavors and advanced policy routing
are supported. A very large variety of Ethernet devices is supported, in addition to support for some
FDDI, Token Ring, Frame Relay, and ISDN, and ATM cards.

Additionally, there are a number of other features that greatly enhance the flexibility of Linux. These
features include an implementation of the SMB filesystem, which interoperates with applications like
lanmanager and Microsoft Windows, called Samba, written by Andrew Tridgell, and an implementation
of the Novell NCP (NetWare Core Protocol).’

1.4.1. Different Streaks of Development
There have been, at various times, varying network development efforts active for Linux.

Fred continued development after Net-2Debugged was made the official network implementation. This
development led to the Net-2e, which featured a much revised design of the networking layer. Fred was
working toward a standardized Device Driver Interface (DDI), but the Net-2e work has ended now.

Yet another implementation of TCP/IP networking came from Matthias Urlichs, who wrote an ISDN
driver for Linux and FreeBSD. For this driver, he integrated some of the BSD networking code in the
Linux kernel. That project, too is no longer being worked on.

There has been a lot of rapid change in the Linux kernel networking implementation, and change is still
the watchword as development continues. Sometimes this means that changes also have to occur in other
software, such as the network configuration tools. While this is no longer as large a problem as it once
was, you may still find that upgrading your kernel to a later version means that you must upgrade your
network configuration tools, too. Fortunately, with the large number of Linux distributions available
today, this is a quite simple task.

The Net-4 network implementation is now quite mature and is in use at a very large number of sites
around the world. Much work has been done on improving the performance of the Net-4 implementation,
and it now competes with the best implementations available for the same hardware platforms. Linux is
proliferating in the Internet Service Provider environment, and is often used to build cheap and reliable
World Wide Web servers, mail servers, and news servers for these sorts of organizations. There is now
sufficient development interest in Linux that it is managing to keep abreast of networking technology as

12

Chapter 1. Introduction to Networking

it changes, and current releases of the Linux kernel offer the next generation of the IP protocol, IPv6, as a
standard offering.

1.4.2. Where to Get the Code

It seems odd now to remember that in the early days of the Linux network code development, the
standard kernel required a huge patch kit to add the networking support to it. Today, network
development occurs as part of the mainstream Linux kernel development process. The latest stable Linux
kernels can be found on ftp.kernel.org in /pub/linux/kernel/v2.x/, where x is an even number.
The latest experimental Linux kernels can be found on ftp.kernel.org in /pub/linux/kernel/v2.y/,
where y is an odd number. There are Linux kernel source mirrors all over the world. It is now hard to
imagine Linux without standard network support.

1.5. Maintaining Your System

Throughout this book, we will mainly deal with installation and configuration issues. Administration is,
however, much more than that—after setting up a service, you have to keep it running, too. For most
services, only a little attendance will be necessary, while some, like mail and news, require that you
perform routine tasks to keep your system up to date. We will discuss these tasks in later chapters.

The absolute minimum in maintenance is to check system and per-application log files regularly for error
conditions and unusual events. Often, you will want to do this by writing a couple of administrative shell
scripts and periodically running them from cron. The source distributions of some major applications,

like inn or C News, contain such scripts. You only have to tailor them to suit your needs and preferences.

The output from any of your cron jobs should be mailed to an administrative account. By default, many
applications will send error reports, usage statistics, or log file summaries to the root account. This
makes sense only if you log in as root frequently; a much better idea is to forward root’s mail to your
personal account by setting up a mail alias as described in Chapter 19 or Chapter 18.

However carefully you have configured your site, Murphy’s law guarantees that some problem will
surface eventually. Therefore, maintaining a system also means being available for complaints. Usually,
people expect that the system administrator can at least be reached via email as root, but there are also
other addresses that are commonly used to reach the person responsible for a specific aspect of
maintenence. For instance, complaints about a malfunctioning mail configuration will usually be
addressed to postmaster, and problems with the news system may be reported to newsmaster or usenet.
Mail to hostmaster should be redirected to the person in charge of the host’s basic network services, and
the DNS name service if you run a name server.

13

Chapter 1. Introduction to Networking

1.5.1. System Security

Another very important aspect of system administration in a network environment is protecting your
system and users from intruders. Carelessly managed systems offer malicious people many targets.
Attacks range from password guessing to Ethernet snooping, and the damage caused may range from
faked mail messages to data loss or violation of your users’ privacy. We will mention some particular
problems when discussing the context in which they may occur and some common defenses against
them.

This section will discuss a few examples and basic techniques for dealing with system security. Of
course, the topics covered cannot treat all security issues you may be faced with in detail; they merely
serve to illustrate the problems that may arise. Therefore, reading a good book on security is an absolute
must, especially in a networked system.

System security starts with good system administration. This includes checking the ownership and
permissions of all vital files and directories and monitoring use of privileged accounts. The COPS
program, for instance, will check your file system and common configuration files for unusual
permissions or other anomalies. It is also wise to use a password suite that enforces certain rules on the
users’ passwords that make them hard to guess. The shadow password suite, for instance, requires a
password to have at least five letters and to contain both upper- and lowercase numbers, as well as
non-alphabetic characters.

When making a service accessible to the network, make sure to give it “least privilege”; don’t permit it to
do things that aren’t required for it to work as designed. For example, you should make programs setuid
to root or some other privileged account only when necessary. Also, if you want to use a service for only
a very limited application, don’t hesitate to configure it as restrictively as your special application allows.
For instance, if you want to allow diskless hosts to boot from your machine, you must provide Trivial
File Transfer Protocol (TFTP) so that they can download basic configuration files from the /boot
directory. However, when used unrestrictively, TFTP allows users anywhere in the world to download
any world-readable file from your system. If this is not what you want, restrict TFTP service to the
/boot directory.’®

You might also want to restrict certain services to users from certain hosts, say from your local network.
In Chapter 12, we introduce tepd, which does this for a variety of network applications. More
sophisticated methods of restricting access to particular hosts or services will be explored later in
Chapter 9.

Another important point is to avoid “dangerous” software. Of course, any software you use can be
dangerous because software may have bugs that clever people might exploit to gain access to your
system. Things like this happen, and there’s no complete protection against it. This problem affects free
software and commercial products alike.” However, programs that require special privilege are inherently
more dangerous than others, because any loophole can have drastic consequences.® If you install a setuid
program for network purposes, be doubly careful to check the documentation so that you don’t create a
security breach by accident.

14

Chapter 1. Introduction to Networking

Another source of concern should be programs that enable login or command execution with limited
authentication. The rlogin, rsh, and rexec commands are all very useful, but offer very limited
authentication of the calling party. Authentication is based on trust of the calling host name obtained
from a name server (we’ll talk about these later), which can be faked. Today it should be standard
practice to disable the r commands completely and replace them with the ssh suite of tools. The ssh tools
use a much more reliable authentication method and provide other services, such as encryption and
compression, as well.

You can never rule out the possibility that your precautions might fail, regardless of how careful you
have been. You should therefore make sure you detect intruders early. Checking the system log files is a
good starting point, but the intruder is probably clever enough to anticipate this action and will delete any
obvious traces he or she left. However, there are tools like tripwire, written by Gene Kim and Gene
Spafford, that allow you to check vital system files to see if their contents or permissions have been
changed. tripwire computes various strong checksums over these files and stores them in a database.
During subsequent runs, the checksums are recomputed and compared to the stored ones to detect any
modifications.

Notes

1. The original spirit of which (see above) still shows on some occasions in Europe.

2. The shell is a command-line interface to the Unix operating system. It’s similar to the DOS prompt
in a Microsoft Windows environment, albeit much more powerful.

3. The Ethernet FAQ at http://www.fags.org/faqs/LANs/ethernet-faq/ talks about this issue, and a
wealth of detailed historical and technical information is available at Charles Spurgeon’s Ethernet
web site at http://wwwhost.ots.utexas.edu/ethernet/.

Alan can be reached at alan @Ixorguk.ukuu.org.uk
NCP is the protocol on which Novell file and print services are based.

We will come back to this topic in Chapter 12.

N ok

There have been commercial Unix systems (that you have to pay lots of money for) that came with a
setuid-root shell script, which allowed users to gain root privilege using a simple standard trick.

8. In 1988, the RTM worm brought much of the Internet to a grinding halt, partly by exploiting a
gaping hole in some programs including the sendmail program. This hole has long since been fixed.

15

Chapter 2. Issues of TCP/IP Networking

In this chapter we turn to the configuration decisions you’ll need to make when connecting your Linux
machine to a TCP/IP network, including dealing with IP addresses, hostnames, and routing issues. This
chapter gives you the background you need in order to understand what your setup requires, while the
next chapters cover the tools you will use.

To learn more about TCP/IP and the reasons behind it, refer to the three-volume set Internetworking with
TCP/IP, by Douglas R. Comer (Prentice Hall). For a more detailed guide to managing a TCP/IP network,
see TCP/IP Network Administration by Craig Hunt (O’Reilly).

2.1. Networking Interfaces

To hide the diversity of equipment that may be used in a networking environment, TCP/IP defines an
abstract inferface through which the hardware is accessed. This interface offers a set of operations that is
the same for all types of hardware and basically deals with sending and receiving packets.

For each peripheral networking device, a corresponding interface has to be present in the kernel. For
example, Ethernet interfaces in Linux are called by such names as et h0 and eth1; PPP (discussed in
Chapter 8) interfaces are named ppp0 and ppp1; and FDDI interfaces are given names like £ddi0 and
£ddil. These interface names are used for configuration purposes when you want to specify a particular
physical device in a configuration command, and they have no meaning beyond this use.

Before being used by TCP/IP networking, an interface must be assigned an IP address that serves as its
identification when communicating with the rest of the world. This address is different from the interface
name mentioned previously; if you compare an interface to a door, the address is like the nameplate
pinned on it.

Other device parameters may be set, like the maximum size of datagrams that can be processed by a
particular piece of hardware, which is referred to as Maximum Transfer Unit (MTU). Other attributes
will be introduced later. Fortunately, most attributes have sensible defaults.

2.2. IP Addresses

As mentioned in Chapter 1, the IP networking protocol understands addresses as 32-bit numbers. Each
machine must be assigned a number unique to the networking environment."' If you are running a local
network that does not have TCP/IP traffic with other networks, you may assign these numbers according
to your personal preferences. There are some IP address ranges that have been reserved for such private
networks. These ranges are listed in Table 2-1. However, for sites on the Internet, numbers are assigned
by a central authority, the Network Information Center (NIC).?

16

Chapter 2. Issues of TCP/IP Networking

IP addresses are split up into four eight-bit numbers called octets for readability. For example,
quark.physics.groucho.edu has an IP address of 0x954C0C04, which is written as 149.76.12.4. This
format is often referred to as dotted quad notation.

Another reason for this notation is that IP addresses are split into a network number, which is contained
in the leading octets, and a host number, which is the remainder. When applying to the NIC for IP
addresses, you are not assigned an address for each single host you plan to use. Instead, you are given a
network number and allowed to assign all valid IP addresses within this range to hosts on your network
according to your preferences.

The size of the host part depends on the size of the network. To accommodate different needs, several
classes of networks, defining different places to split IP addresses, have been defined. The class networks
are described here:

Class A

Class A comprises networks 1.0.0.0 through 127.0.0.0. The network number is contained in the first
octet. This class provides for a 24-bit host part, allowing roughly 1.6 million hosts per network.

Class B

Class B contains networks 128.0.0.0 through 191.255.0.0; the network number is in the first two
octets. This class allows for 16,320 nets with 65,024 hosts each.

Class C

Class C networks range from 192.0.0.0 through 223.255.255.0, with the network number contained
in the first three octets. This class allows for nearly 2 million networks with up to 254 hosts.

Classes D, E, and F

Addresses falling into the range of 224.0.0.0 through 254.0.0.0 are either experimental or are
reserved for special purpose use and don’t specify any network. IP Multicast, which is a service that
allows material to be transmitted to many points on an internet at one time, has been assigned
addresses from within this range.

If we go back to the example in Chapter 1, we find that 149.76.12.4, the address of quark, refers to host
12.4 on the class B network 149.76.0.0.

You may have noticed that not all possible values in the previous list were allowed for each octet in the
host part. This is because octets 0 and 255 are reserved for special purposes. An address where all host
part bits are O refers to the network, and an address where all bits of the host part are 1 is called a
broadcast address. This refers to all hosts on the specified network simultaneously. Thus,
149.76.255.255 is not a valid host address, but refers to all hosts on network 149.76.0.0.

17

Chapter 2. Issues of TCP/IP Networking

A number of network addresses are reserved for special purposes. 0.0.0.0 and 127.0.0.0 are two such
addresses. The first is called the default route, and the latter is the loopback address. The default route
has to do with the way the IP routes datagrams.

Network 127.0.0.0 is reserved for IP traffic local to your host. Usually, address 127.0.0.1 will be assigned
to a special interface on your host, the loopback interface, which acts like a closed circuit. Any IP packet
handed to this interface from TCP or UDP will be returned to them as if it had just arrived from some
network. This allows you to develop and test networking software without ever using a “real” network.
The loopback network also allows you to use networking software on a standalone host. This may not be
as uncommon as it sounds; for instance, many UUCP sites don’t have IP connectivity at all, but still want
to run the INN news system. For proper operation on Linux, INN requires the loopback interface.

Some address ranges from each of the network classes have been set aside and designated “reserved” or
“private” address ranges. These addresses are reserved for use by private networks and are not routed on
the Internet. They are commonly used by organizations building their own intranet, but even small
networks often find them useful. The reserved network addresses appear in Table 2-1.

Table 2-1. IP Address Ranges Reserved for Private Use

Class Networks

A 10.0.0.0 through 10.255.255.255

B 172.16.0.0 through 172.31.0.0

C 192.168.0.0 through 192.168.255.0

2.3. Address Resolution

Now that you’ve seen how IP addresses are composed, you may be wondering how they are used on an
Ethernet or Token Ring network to address different hosts. After all, these protocols have their own
addresses to identify hosts that have absolutely nothing in common with an IP address, don’t they? Right.

A mechanism is needed to map IP addresses onto the addresses of the underlying network. The
mechanism used is the Address Resolution Protocol (ARP). In fact, ARP is not confined to Ethernet or
Token Ring, but is used on other types of networks, such as the amateur radio AX.25 protocol. The idea
underlying ARP is exactly what most people do when they have to find Mr. X in a throng of 150 people:
the person who wants him calls out loudly enough that everyone in the room can hear them, expecting
him to respond if he is there. When he responds, we know which person he is.

When ARP wants to find the Ethernet address corresponding to a given IP address, it uses an Ethernet
feature called broadcasting, in which a datagram is addressed to all stations on the network
simultaneously. The broadcast datagram sent by ARP contains a query for the IP address. Each receiving
host compares this query to its own IP address and if it matches, returns an ARP reply to the inquiring
host. The inquiring host can now extract the sender’s Ethernet address from the reply.

18

Chapter 2. Issues of TCP/IP Networking

You may wonder how a host can reach an Internet address that may be on a different network halfway
around the world. The answer to this question involves routing, namely finding the physical location of a
host in a network. We will discuss this issue further in the next section.

Let’s talk a little more about ARP. Once a host has discovered an Ethernet address, it stores it in its ARP
cache so that it doesn’t have to query for it again the next time it wants to send a datagram to the host in
question. However, it is unwise to keep this information forever; the remote host’s Ethernet card may be
replaced because of technical problems, so the ARP entry becomes invalid. Therefore, entries in the ARP
cache are discarded after some time to force another query for the IP address.

Sometimes it is also necessary to find the IP address associated with a given Ethernet address. This
happens when a diskless machine wants to boot from a server on the network, which is a common
situation on Local Area Networks. A diskless client, however, has virtually no information about
itself—except for its Ethernet address! So it broadcasts a message containing a request asking a boot
server to provide it with an IP address. There’s another protocol for this situation named Reverse Address
Resolution Protocol (RARP). Along with the BOOTP protocol, it serves to define a procedure for
bootstrapping diskless clients over the network.

2.4. IP Routing

We now take up the question of finding the host that datagrams go to based on the IP address. Different
parts of the address are handled in different ways; it is your job to set up the files that indicate how to
treat each part.

2.4.1. IP Networks

When you write a letter to someone, you usually put a complete address on the envelope specifying the
country, state, and Zip Code. After you put it in the mailbox, the post office will deliver it to its
destination: it will be sent to the country indicated, where the national service will dispatch it to the
proper state and region. The advantage of this hierarchical scheme is obvious: wherever you post the
letter, the local postmaster knows roughly which direction to forward the letter, but the postmaster
doesn’t care which way the letter will travel once it reaches its country of destination.

IP networks are structured similarly. The whole Internet consists of a number of proper networks, called
autonomous systems. Each system performs routing between its member hosts internally so that the task
of delivering a datagram is reduced to finding a path to the destination host’s network. As soon as the
datagram is handed to any host on that particular network, further processing is done exclusively by the
network itself.

19

Chapter 2. Issues of TCP/IP Networking

2.4.2. Subnetworks

This structure is reflected by splitting IP addresses into a host and network part, as explained previously.
By default, the destination network is derived from the network part of the IP address. Thus, hosts with
identical IP network numbers should be found within the same network.’

It makes sense to offer a similar scheme inside the network, too, since it may consist of a collection of
hundreds of smaller networks, with the smallest units being physical networks like Ethernets. Therefore,
IP allows you to subdivide an IP network into several subnets.

A subnet takes responsibility for delivering datagrams to a certain range of IP addresses. It is an
extension of the concept of splitting bit fields, as in the A, B, and C classes. However, the network part is
now extended to include some bits from the host part. The number of bits that are interpreted as the
subnet number is given by the so-called subnet mask, or netmask. This is a 32-bit number too, which
specifies the bit mask for the network part of the IP address.

The campus network of Groucho Marx University is an example of such a network. It has a class B
network number of 149.76.0.0, and its netmask is therefore 255.255.0.0.

Internally, GMU’s campus network consists of several smaller networks, such various departments’
LANS. So the range of IP addresses is broken up into 254 subnets, 149.76.1.0 through 149.76.254.0. For
example, the department of Theoretical Physics has been assigned 149.76.12.0. The campus backbone is
a network in its own right, and is given 149.76.1.0. These subnets share the same IP network number,
while the third octet is used to distinguish between them. They will thus use a subnet mask of
255.255.255.0.

Figure 2-1 shows how 149.76.12.4, the address of quark, is interpreted differently when the address is
taken as an ordinary class B network and when used with subnetting.

Figure 2-1. Subnetting a class B network

Class B

Metwork Padt . J-b.-.:._rhﬂm
149 76 WM | 4
P et Pl Metwork Padt &E‘H . Host Bt

4

20

Chapter 2. Issues of TCP/IP Networking

It is worth noting that subnetting (the technique of generating subnets) is only an internal division of the
network. Subnets are generated by the network owner (or the administrators). Frequently, subnets are
created to reflect existing boundaries, be they physical (between two Ethernets), administrative (between
two departments), or geographical (between two locations), and authority over each subnet is delegated
to some contact person. However, this structure affects only the network’s internal behavior, and is
completely invisible to the outside world.

2.4.3. Gateways

Subnetting is not only a benefit to the organization; it is frequently a natural consequence of hardware
boundaries. The viewpoint of a host on a given physical network, such as an Ethernet, is a very limited
one: it can only talk to the host of the network it is on. All other hosts can be accessed only through
special-purpose machines called gateways. A gateway is a host that is connected to two or more physical
networks simultaneously and is configured to switch packets between them.

Figure 2-2 shows part of the network topology at Groucho Marx University (GMU). Hosts that are on
two subnets at the same time are shown with both addresses.

21

Chapter 2. Issues of TCP/IP Networking

Figure 2-2. A part of the net topology at Groucho Marx University

| SEEUERS I ST |
s ardos quark
4.2 4.1 (124

[y 121
@ sophus @. nids
(1.1} 112

FOOICampus Backbona

uz1 % .

21

| 2.0 L]

Groucha

Computi a

ket m
. %

Different physical networks have to belong to different IP networks for IP to be able to recognize if a
host is on a local network. For example, the network number 149.76.4.0 is reserved for hosts on the
mathematics LAN. When sending a datagram to quark, the network software on erdos immediately sees
from the IP address 149.76.12.4 that the destination host is on a different physical network, and therefore
can be reached only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics department and the campus
backbone. It accesses each through a different interface, eth0 and £ddio0, respectively. Now, what IP
address do we assign it? Should we give it one on subnet 149.76.1.0, or on 149.76.4.0?

The answer is: “both.” sophus has been assigned the address 149.76.1.1 for use on the 149.76.1.0
network and address 149.76.4.1 for use on the 149.76.4.0 network. A gateway must be assigned one IP
address for each network it belongs to. These addresses—along with the corresponding netmask—are
tied to the interface through which the subnet is accessed. Thus, the interface and address mapping for
sophus would look like this:

22

Chapter 2. Issues of TCP/IP Networking

Interface Address Netmask
etho 149.76.4.1 255.255.255.0
£ddio 149.76.1.1 255.255.255.0
lo 127.0.0.1 255.0.0.0

The last entry describes the loopback interface 10, which we talked about earlier.

Generally, you can ignore the subtle difference between attaching an address to a host or its interface.
For hosts that are on one network only, like erdos, you would generally refer to the host as having
this-and-that IP address, although strictly speaking, it’s the Ethernet interface that has this IP address.
The distinction is really important only when you refer to a gateway.

2.4.4. The Routing Table

We now focus our attention on how IP chooses a gateway to use to deliver a datagram to a remote
network.

We have seen that erdos, when given a datagram for quark, checks the destination address and finds that
it is not on the local network. erdos therefore sends the datagram to the default gateway sophus, which is
now faced with the same task. sophus recognizes that quark is not on any of the networks it is connected
to directly, so it has to find yet another gateway to forward it through. The correct choice would be niels,
the gateway to the Physics department. sophus thus needs information to associate a destination network
with a suitable gateway.

IP uses a table for this task that associates networks with the gateways by which they may be reached. A
catch-all entry (the default route) must generally be supplied too; this is the gateway associated with
network 0.0.0.0. All destination addresses match this route, since none of the 32 bits are required to
match, and therefore packets to an unknown network are sent through the default route. On sophus, the
table might look like this:

Network Netmask Gateway Interface
149.76.1.0 255.255.255.0 - £ddio
149.76.2.0 255.255.255.0 149.76.1.2 £ddio
149.76.3.0 255.255.255.0 149.76.1.3 £ddio
149.76.4.0 255.255.255.0 - eth0
149.76.5.0 255.255.255.0 149.76.1.5 £ddio
0.0.0.0 0.0.0.0 149.76.1.2 £ddi0

If you need to use a route to a network that sophus is directly connected to, you don’t need a gateway; the
gateway column here contains a hyphen.

23

Chapter 2. Issues of TCP/IP Networking

The process for identifying whether a particular destination address matches a route is a mathematical
operation. The process is quite simple, but it requires an understanding of binary arithmetic and logic: A
route matches a destination if the network address logically ANDed with the netmask precisely equals
the destination address logically ANDed with the netmask.

Translation: a route matches if the number of bits of the network address specified by the netmask
(starting from the left-most bit, the high order bit of byte one of the address) match that same number of
bits in the destination address.

When the IP implementation is searching for the best route to a destination, it may find a number of
routing entries that match the target address. For example, we know that the default route matches every
destination, but datagrams destined for locally attached networks will match their local route, too. How
does IP know which route to use? It is here that the netmask plays an important role. While both routes
match the destination, one of the routes has a larger netmask than the other. We previously mentioned
that the netmask was used to break up our address space into smaller networks. The larger a netmask is,
the more specifically a target address is matched; when routing datagrams, we should always choose the
route that has the largest netmask. The default route has a netmask of zero bits, and in the configuration
presented above, the locally attached networks have a 24-bit netmask. If a datagram matches a locally
attached network, it will be routed to the appropriate device in preference to following the default route
because the local network route matches with a greater number of bits. The only datagrams that will be
routed via the default route are those that don’t match any other route.

You can build routing tables by a variety of means. For small LANS, it is usually most efficient to
construct them by hand and feed them to IP using the route command at boot time (see Chapter 5). For
larger networks, they are built and adjusted at runtime by routing daemons; these daemons run on central
hosts of the network and exchange routing information to compute “optimal” routes between the member
networks.

Depending on the size of the network, you’ll need to use different routing protocols. For routing inside
autonomous systems (such as the Groucho Marx campus), the internal routing protocols are used. The
most prominent one of these is the Routing Information Protocol (RIP), which is implemented by the
BSD routed daemon. For routing between autonomous systems, external routing protocols like External
Gateway Protocol (EGP) or Border Gateway Protocol (BGP) have to be used; these protocols, including
RIP, have been implemented in the University of Cornell’s gated daemon.

2.4.5. Metric Values

We depend on dynamic routing to choose the best route to a destination host or network based on the
number of hops. Hops are the gateways a datagram has to pass before reaching a host or network. The
shorter a route is, the better RIP rates it. Very long routes with 16 or more hops are regarded as unusable
and are discarded.

RIP manages routing information internal to your local network, but you have to run gated on all hosts.

24

Chapter 2. Issues of TCP/IP Networking

At boot time, gated checks for all active network interfaces. If there is more than one active interface
(not counting the loopback interface), it assumes the host is switching packets between several networks
and will actively exchange and broadcast routing information. Otherwise, it will only passively receive
RIP updates and update the local routing table.

When broadcasting information from the local routing table, gated computes the length of the route from
the so-called metric value associated with the routing table entry. This metric value is set by the system
administrator when configuring the route, and should reflect the actual route cost.* Therefore, the metric
of a route to a subnet that the host is directly connected to should always be zero, while a route going
through two gateways should have a metric of two. You don’t have to bother with metrics if you don’t
use RIP or gated.

2.5. The Internet Control Message Protocol

IP has a companion protocol that we haven’t talked about yet. This is the Internet Control Message
Protocol (ICMP), used by the kernel networking code to communicate error messages to other hosts. For
instance, assume that you are on erdos again and want to telnet to port 12345 on quark, but there’s no
process listening on that port. When the first TCP packet for this port arrives on quark, the networking
layer will recognize this arrival and immediately return an ICMP message to erdos stating “Port
Unreachable.”

The ICMP protocol provides several different messages, many of which deal with error conditions.
However, there is one very interesting message called the Redirect message. It is generated by the
routing module when it detects that another host is using it as a gateway, even though a much shorter
route exists. For example, after booting, the routing table of sophus may be incomplete. It might contain
the routes to the Mathematics network, to the FDDI backbone, and the default route pointing at the
Groucho Computing Center’s gateway (gccl). Thus, packets for quark would be sent to gecl rather than
to niels, the gateway to the Physics department. When receiving such a datagram, gccl will notice that
this is a poor choice of route and will forward the packet to niels, meanwhile returning an ICMP Redirect
message to sophus telling it of the superior route.

This seems to be a very clever way to avoid manually setting up any but the most basic routes. However,
be warned that relying on dynamic routing schemes, be it RIP or ICMP Redirect messages, is not always
a good idea. ICMP Redirect and RIP offer you little or no choice in verifying that some routing
information is indeed authentic. This situation allows malicious good-for-nothings to disrupt your entire
network traffic, or even worse. Consequently, the Linux networking code treats Network Redirect
messages as if they were Host Redirects. This minimizes the damage of an attack by restricting it to just
one host, rather than the whole network. On the flip side, it means that a little more traffic is generated in
the event of a legitimate condition, as each host causes the generation of an ICMP Redirect message. It is
generally considered bad practice to rely on ICMP redirects for anything these days.

25

Chapter 2. Issues of TCP/IP Networking

2.6. Resolving Host Names

As described previously, addressing in TCP/IP networking, at least for IP Version 4, revolves around
32-bit numbers. However, you will have a hard time remembering more than a few of these numbers.
Therefore, hosts are generally known by “ordinary” names such as gauss or strange. It becomes the
application’s duty to find the IP address corresponding to this name. This process is called hostname
resolution.

When an application needs to find the IP address of a given host, it relies on the library functions
gethostbyname (3) and gethostbyaddr (3). Traditionally, these and a number of related procedures
were grouped in a separate library called the resolverlibrary ; on Linux, these functions are part of the
standard 1ibc. Colloquially, this collection of functions is therefore referred to as “the resolver.”
Resolver name configuration is detailed in Chapter 6.

On a small network like an Ethernet or even a cluster of Ethernets, it is not very difficult to maintain
tables mapping hostnames to addresses. This information is usually kept in a file named /etc/hosts.
When adding or removing hosts, or reassigning addresses, all you have to do is update the hosts file on
all hosts. Obviously, this will become burdensome with networks that comprise more than a handful of
machines.

One solution to this problem is the Network Information System (NIS), developed by Sun Microsystems,
colloquially called YP or Yellow Pages. NIS stores the host s file (and other information) in a database
on a master host from which clients may retrieve it as needed. Still, this approach is suitable only for
medium-sized networks such as LANs, because it involves maintaining the entire host s database
centrally and distributing it to all servers. NIS installation and configuration is discussed in detail in
Chapter 13.

On the Internet, address information was initially stored in a single HOSTS . TXT database, too. This file
was maintained at the Network Information Center (NIC), and had to be downloaded and installed by all
participating sites. When the network grew, several problems with this scheme arose. Besides the
administrative overhead involved in installing HOSTS . TXT regularly, the load on the servers that
distributed it became too high. Even more severe, all names had to be registered with the NIC, which
made sure that no name was issued twice.

This is why a new name resolution scheme was adopted in 1994: the Domain Name System. DNS was
designed by Paul Mockapetris and addresses both problems simultaneously. We discuss the Domain
Name System in detail in Chapter 6.

Notes

1. The version of the Internet Protocol most frequently used on the Internet is Version 4. A lot of effort
has been expended in designing a replacement called IP Version 6. IPv6 uses a different addressing
scheme and larger addresses. Linux has an implementation of IPv6, but it isn’t ready to document it

26

Chapter 2. Issues of TCP/IP Networking

in this book yet. The Linux kernel support for IPv6 is good, but a large number of network
applications need to be modified to support it as well. Stay tuned.

Frequently, IP addresses will be assigned to you by the provider from whom you buy your IP
connectivity. However, you may also apply to the NIC directly for an IP address for your network by
sending email to hostmaster @internic.net, or by using the form at http://www.internic.net/.

Autonomous systems are slightly more general. They may comprise more than one IP network.

The cost of a route can be thought of, in a simple case, as the number of hops required to reach the
destination. Proper calculation of route costs can be a fine art in complex network designs.

27

Chapter 3. Configuringthe NetworkingHardware

We’ve been talking quite a bit about network interfaces and general TCP/IP issues, but we haven’t really
covered what happens when the “networking code” in the kernel accesses a piece of hardware. In order
to describe this accurately, we have to talk a little about the concept of interfaces and drivers.

First, of course, there’s the hardware itself, for example an Ethernet, FDDI or Token Ring card: this is a
slice of Epoxy cluttered with lots of tiny chips with strange numbers on them, sitting in a slot of your PC.
This is what we generally call a physical device.

For you to use a network card, special functions have to be present in your Linux kernel that understand
the particular way this device is accessed. The software that implements these functions is called a device
driver. Linux has device drivers for many different types of network interface cards: ISA, PCI, MCA,
EISA, Parallel port, PCMCIA, and more recently, USB.

But what do we mean when we say a driver “handles” a device? Let’s consider an Ethernet card. The
driver has to be able to communicate with the peripheral’s on-card logic somehow: it has to send
commands and data to the card, while the card should deliver any data received to the driver.

In IBM-style personal computers, this communication takes place through a cluster of I/O addresses that
are mapped to registers on the card and/or through shared or direct memory transfers. All commands and
data the kernel sends to the card have to go to these addresses. I/O and memory addresses are generally
described by providing the starting or base address. Typical base addresses for ISA bus Ethernet cards
are 0x280 or 0x300. PCI bus network cards generally have their I/O address automatically assigned.

Usually you don’t have to worry about any hardware issues such as the base address because the kernel
makes an attempt at boot time to detect a card’s location. This is called auto probing, which means that
the kernel reads several memory or I/O locations and compares the data it reads there with what it would
expect to see if a certain network card were installed at that location. However, there may be network
cards it cannot detect automatically; this is sometimes the case with cheap network cards that are
not-quite clones of standard cards from other manufacturers. Also, the kernel will normally attempt to
detect only one network device when booting. If you’re using more than one card, you have to tell the
kernel about the other cards explicitly.

Another parameter that you might have to tell the kernel about is the interrupt request line. Hardware
components usually interrupt the kernel when they need to be taken care of—for example, when data has
arrived or a special condition occurs. In an ISA bus PC, interrupts may occur on one of 15 interrupt
channels numbered 0, 1, and 3 through 15. The interrupt number assigned to a hardware component is
called its interrupt request number (IRQ)."

As described in Chapter 2, the kernel accesses a piece of network hardware through a software construct
called an interface. Interfaces offer an abstract set of functions that are the same across all types of
hardware, such as sending or receiving a datagram.

28

Chapter 3. Configuringthe NetworkingHardware

Interfaces are identified by means of names. In many other Unix-like operating systems, the network
interface is implemented as a special device file in the /dev/ directory. If you type the 1s -las /dev/
command, you will see what these device files look like. In the file permissions (second) column you will
see that device files begin with a letter rather than the hyphen seen for normal files. This character
indicates the device type. The most common device types are b, which indicates the device is a block
device and handles whole blocks of data with each read and write, and c, which indicates the device is a
character device and handles data one character at a time. Where you would normally see the file length
in the Is output, you instead see two numbers, called the major and minor device numbers. These
numbers indicate the actual device with which the device file is associated.

Each device driver registers a unique major number with the kernel. Each instance of that device
registers a unique minor number for that major device. The tty interfaces, /dev/ttyx, are a character
mode device indicated by the “c”, and each have a major number of 4, but /dev/ttyl has a minor
number of 1, and /dev/tty2 has a minor number of 2. Device files are very useful for many types of

devices, but can be clumsy to use when trying to find an unused device to open.

Linux interface names are defined internally in the kernel and are not device files in the /dev directory.
Some typical device names are listed later in Section 3.2.” The assignment of interfaces to devices
usually depends on the order in which devices are configured. For instance, the first Ethernet card
installed will become eth0, and the next will be eth1. SLIP interfaces are handled differently from
others because they are assigned dynamically. Whenever a SLIP connection is established, an interface is
assigned to the serial port.

Figure 3-1 illustrates the relationship between the hardware, device drivers, and interfaces.

Figure 3-1. The relationship between drivers, interfaces, and hardware

Karnal Networ king Coda

EI:_H'I:E
Oriveer SHC Orivar ICom DOriver

e DD @@

When booting, the kernel displays the devices it detects and the interfaces it installs. The following is an
excerpt from typical boot messages:

29

Chapter 3. Configuringthe NetworkingHardware

This processor honors the WP bit even when in supervisor mode./
Good.

Swansea University Computer Society NET3.035 for Linux 2.0

NET3: Unix domain sockets 0.13 for Linux NET3.035.

Swansea University Computer Society TCP/IP for NET3.034

IP Protocols: IGMP,ICMP, UDP, TCP

Swansea University Computer Society IPX 0.34 for NET3.035

IPX Portions Copyright (c) 1995 Caldera, Inc.

Serial driver version 4.13 with no serial options enabled

tty00 at 0x03f8 (irg = 4) is a 16550A

tty0l at 0x02f8 (irg = 3) is a 16550A

CSLIP: code copyright 1989 Regents of the University of California

PPP: Version 2.2.0 (dynamic channel allocation)

PPP Dynamic channel allocation code copyright 1995 Caldera, Inc.

PPP line discipline registered.

ethO: 3c509 at 0x300 tag 1, 1l0baseT port, address 00 a0 24 Oe e4 e0,/
IRQ 10.

3c509.c:1.12 6/4/97 becker@cesdis.gsfc.nasa.gov

Linux Version 2.0.32 (root@perf) (gcc Version 2.7.2.1)

#1 Tue Oct 21 15:30:44 EST 1997

This example shows that the kernel has been compiled with TCP/IP enabled, and it includes drivers for
SLIP, CSLIP, and PPP. The third line from the bottom says that a 3C509 Ethernet card was detected and
installed as interface etho0. If you have some other type of network card—perhaps a D-Link pocket
adaptor, for example—the kernel will usually print a line starting with its device name—d10 in the
D-Link example—followed by the type of card detected. If you have a network card installed but don’t
see any similar message, the kernel is unable to detect your card properly. This situation will be
discussed later in the section “Ethernet Autoprobing.”

3.1. Kernel Configuration

Most Linux distributions are supplied with boot disks that work for all common types of PC hardware.
Generally, the supplied kernel is highly modularized and includes nearly every possible driver. This is a
great idea for boot disks, but is probably not what you’d want for long-term use. There isn’t much point
in having drivers cluttering up your disk that you will never use. Therefore, you will generally roll your
own kernel and include only those drivers you actually need or want; that way you save a little disk space
and reduce the time it takes to compile a new kernel.

In any case, when running a Linux system, you should be familiar with building a kernel. Think of it as a
right of passage, an affirmation of the one thing that makes free software as powerful as it is—you have
the source. It isn’t a case of, “I have to compile a kernel,” rather it’s a case of, “I can compile a kernel.”

30

Chapter 3. Configuringthe NetworkingHardware

The basics of compiling a Linux kernel are explained in Matt Welsh’s book, Running Linux (O’Reilly).
Therefore, we will discuss only configuration options that affect networking in this section.

One important point that does bear repeating here is the way the kernel version numbering scheme
works. Linux kernels are numbered in the following format: 2.2 . 14. The first digit indicates the major
version number. This digit changes when there are large and significant changes to the kernel design. For
example, the kernel changed from major 1 to 2 when the kernel obtained support for machines other than
Intel machines. The second number is the minor version number. In many respects, this number is the
most important number to look at. The Linux development community has adopted a standard at which
even minor version numbers indicate production, or stable, kernels and odd minor version numbers
indicate development, or unstable, kernels. The stable kernels are what you should use on a machine that
is important to you, as they have been more thoroughly tested. The development kernels are what you
should use if you are interested in experimenting with the newest features of Linux, but they may have
problems that haven’t yet been found and fixed. The third number is simply incremented for each release
of a minor version.?

When running make menuconfig, you are presented with a text-based menu that offers lists of
configuration questions, such as whether you want kernel math emulation. One of these queries asks you
whether you want TCP/IP networking support. You must answer this with y to get a kernel capable of
networking.

3.1.1. Kernel Options in Linux 2.0 and Higher

After the general option section is complete, the configuration will go on to ask whether you want to
include support for various features, such as SCSI drivers or sound cards. The prompt will indicate what
options are available. You can press ? to obtain a description of what the option is actually offering.
You’ll always have the option of yes (y) to statically include the component in the kernel, or no (n) to
exclude the component completely. You’ll also see the module (m) option for those components that may
be compiled as a run-time loadable module. Modules need to be loaded before they can be used, and are
useful for drivers of components that you use infrequently.

The subsequent list of questions deal with networking support. The exact set of configuration options is
in constant flux due to ongoing development. A typical list of options offered by most kernel versions
around 2.0 and 2.1 looks like this:

*

* Network device support

*

Network device support (CONFIG_NETDEVICES) [Y/n/?]

You must answer this question with y if you want to use any type of networking devices, whether they
are Ethernet, SLIP, PPP, or whatever. When you answer the question with y, support for Ethernet-type

31

Chapter 3. Configuringthe NetworkingHardware

devices is enabled automatically. You must answer additional questions if you want to enable support for
other types of network drivers:

PLIP (parallel port) support (CONFIG_PLIP) [N/y/m/?] vy
PPP (point-to-point) support (CONFIG_PPP) [N/y/m/?] y
*

* CCP compressors for PPP are only built as modules.

*

SLIP (serial line) support (CONFIG_SLIP) [N/y/m/?] m

CSLIP compressed headers (CONFIG_SLIP_COMPRESSED) [N/y/?] (NEW) vy
Keepalive and linefill (CONFIG_SLIP_SMART) [N/y/?] (NEW) vy

Six bit SLIP encapsulation (CONFIG_SLIP_MODE_SLIP6) [N/y/?] (NEW) vy

These questions concern the various link layer protocols that Linux supports. Both PPP and SLIP allow
you to transport IP datagrams across serial lines. PPP is actually a suite of protocols used to send network
traffic across serial lines. Some of the protocols that form PPP manage the way that you authenticate
yourself to the dial-in server, while others manage the way certain protocols are carried across the
link—PPP is not limited to carrying TCP/IP datagrams; it may also carry other protocol such as IPX.

If you answer y or m to SLIP support, you will be prompted to answer the three questions that appear
below it. The compressed header option provides support for CSLIP, a technique that compresses TCP/IP
headers to as little as three bytes. Note that this kernel option does not turn on CSLIP automatically; it
merely provides the necessary kernel functions for it. The Keepalive and linefill option causes
the SLIP support to periodically generate activity on the SLIP line to avoid it being dropped by an
inactivity timer. The Six bit SLIP encapsulation option allows you to run SLIP over lines and
circuits that are not capable of transmitting the whole 8-bit data set cleanly. This is similar to the
uuencoding or binhex technique used to send binary files by electronic mail.

PLIP provides a way to send IP datagrams across a parallel port connection. It is mostly used to
communicate with PCs running DOS. On typical PC hardware, PLIP can be faster than PPP or SLIP, but
it requires much more CPU overhead to perform, so while the transfer rate might be good, other tasks on
the machine may be slow.

The following questions address network cards from various vendors. As more drivers are being
developed, you are likely to see questions added to this section. If you want to build a kernel you can use
on a number of different machines, or if your machine has more than one type of network card installed,
you can enable more than one driver:

Ethernet (10 or 100Mbit) (CONFIG_NET_ETHERNET) [Y/n/?]
3COM cards (CONFIG_NET_VENDOR_3COM) [Y/n/?]
3c501 support (CONFIG_EL1) [N/y/m/?]

32

Chapter 3. Configuringthe NetworkingHardware

3c503 support (CONFIG_EL2) [N/y/m/?]

3c509/3¢c579 support (CONFIG_EL3) [Y/m/n/?]

3c590/3¢c900 series (592/595/597/900/905) "Vortex/Boomerang" support/
(CONFIG_VORTEX) [N/y/m/?]

AMD LANCE and PCnet (AT1500 and NE2100) support (CONFIG_LANCE) [N/y/?]

AMD PCInet32 (VLB and PCI) support (CONFIG_LANCE32) [N/y/?] (NEW)

Western Digital/SMC cards (CONFIG_NET_VENDOR_SMC) [N/y/?]

WD80x3 support (CONFIG_WD80x3) [N/y/m/?] (NEW)

SMC Ultra support (CONFIG_ULTRA) [N/y/m/?] (NEW)

SMC Ultra32 support (CONFIG_ULTRA32) [N/y/m/?] (NEW)

SMC 9194 support (CONFIG_SMC9194) [N/y/m/?] (NEW)

Other ISA cards (CONFIG_NET_TISA) [N/y/?]

Cabletron E21xx support (CONFIG_E2100) [N/y/m/?] (NEW)

DEPCA, DE10x, DE200, DE201, DE202, DE422 support (CONFIG_DEPCA) [N/y/m/2]1/
(NEW)

EtherWORKS 3 (DE203, DE204, DE205) support (CONFIG_EWRK3) [N/y/m/?] (NEW)

EtherExpress 16 support (CONFIG_EEXPRESS) [N/y/m/?] (NEW)

HP PCLAN+ (27247B and 27252A) support (CONFIG_HPLAN_PLUS) [N/y/m/?] (NEW)

HP PCLAN (27245 and other 27xxx series) support (CONFIG_HPLAN) [N/y/m/?]/
(NEW)

HP 10/100VG PCLAN (ISA, EISA, PCI) support (CONFIG_HP100) [N/y/m/?] (NEW)

NE2000/NE1000 support (CONFIG_NE2000) [N/y/m/?] (NEW)

SK_G16 support (CONFIG_SK_Gl6) [N/y/?] (NEW)

EISA, VLB, PCI and on card controllers (CONFIG_NET_EISA) [N/y/?]

Apricot Xen-II on card ethernet (CONFIG_APRICOT) [N/y/m/?] (NEW)

Intel EtherExpress/Pro 100B support (CONFIG_EEXPRESS_PRO100B) [N/y/m/?]/
(NEW)

DE425, DE434, DE435, DE450, DE500 support (CONFIG_DE4X5) [N/y/m/?] (NEW)

DECchip Tulip (dc21x4x) PCI support (CONFIG_DEC_ELCP) [N/y/m/?] (NEW)

Digi Intl. RightSwitch SE-X support (CONFIG_DGRS) [N/y/m/?] (NEW)

Pocket and portable adaptors (CONFIG_NET_POCKET) [N/y/?]

AT-LAN-TEC/RealTek pocket adaptor support (CONFIG_ATP) [N/y/?] (NEW)

D-Link DE600 pocket adaptor support (CONFIG_DE600) [N/y/m/2] (NEW)

D-Link DE620 pocket adaptor support (CONFIG_DE620) [N/y/m/?] (NEW)

Token Ring driver support (CONFIG_TR) [N/y/?]

IBM Tropic chipset based adaptor support (CONFIG_IBMTR) [N/y/m/?] (NEW)

FDDI driver support (CONFIG_FDDI) [N/y/?]

Digital DEFEA and DEFPA adapter support (CONFIG_DEFXX) [N/y/?] (NEW)

ARCnet support (CONFIG_ARCNET) [N/y/m/?]

Enable arcOe (ARCnet "Ether—-Encap" packet format) (CONFIG_ARCNET_ETH)/
[N/y/?] (NEW)
Enable arcOs (ARCnet RFC1051 packet format) (CONFIG_ARCNET_1051)/
[N/y/?] (NEW)

Finally, in the file system section, the configuration script will ask you whether you want support for
NFS, the networking file system. NFS lets you export file systems to several hosts, which makes the files
appear as if they were on an ordinary hard disk attached to the host:

33

Chapter 3. Configuringthe NetworkingHardware

NFS file system support (CONFIG_NFS_FS) [v]

We describe NFS in detail in Chapter 14.

3.1.2. Kernel Networking Options in Linux 2.0.0 and Higher

Linux 2.0.0 marked a significant change in Linux Networking. Many features were made a standard part
of the Kernel, such as support for IPX. A number of options were also added and made configurable.
Many of these options are used only in very special circumstances and we won’t cover them in detail.
The Networking HOWTO probably addresses what is not covered here. We’ll list a number of useful
options in this section, and explain when you’d want to use each one:

Basics

To use TCP/IP networking, you must answer this question with y. If you answer with n, however,
you will still be able to compile the kernel with IPX support:

Networking options —-—-->
[«] TCP/IP networking

Gateways

You have to enable this option if your system acts as a gateway between two networks or between
a LAN and a SLIP link, etc. It doesn’t hurt to enable this by default, but you may want to disable it
to configure a host as a so-called firewall. Firewalls are hosts that are connected to two or more
networks, but don’t route traffic between them. They’re commonly used to provide users with
Internet access at minimal risk to the internal network. Users are allowed to log in to the firewall
and use Internet services, but the company’s machines are protected from outside attacks because
incoming connections can’t cross the firewall (firewalls are covered in detail in Chapter 9):

[*] IP: forwarding/gatewaying

Virtual hosting

These options together allow to you configure more than one IP address onto an interface. This is
sometimes useful if you want to do “virtual hosting,” through which a single machine can be
configured to look and act as though it were actually many separate machines, each with its own
network personality. We’ll talk more about IP aliasing in a moment:

[«] Network aliasing
<+x> IP: aliasing support

34

Chapter 3. Configuringthe NetworkingHardware

Accounting

This option enables you to collect data on the volume of IP traffic leaving and arriving at your
machine (we cover this is detail in Chapter 10):

[«] IP: accounting

PC hug

This option works around an incompatibility with some versions of PC/TCP, a commercial TCP/IP
implementation for DOS-based PCs. If you enable this option, you will still be able to communicate
with normal Unix machines, but performance may be hurt over slow links:

—-—— (it 1s safe to leave these untouched)
[*] IP: PC/TCP compatibility mode

Diskless booting

This function enables Reverse Address Resolution Protocol (RARP). RARP is used by diskless
clients and X terminals to request their IP address when booting. You should enable RARP if you
plan to serve this sort of client. A small program called rarp, included with the standard networking
utilities, is used to add entries to the kernel RARP table:

<x> IP: Reverse ARP

MTU

When sending data over TCP, the kernel has to break up the stream into blocks of data to pass to
IP. The size of the block is called the Maximum Transmission Unit, or MTU. For hosts that can be
reached over a local network such as an Ethernet, it is typical to use an MTU as large as the
maximum length of an Ethernet packet—1,500 bytes. When routing IP over a Wide Area Network
like the Internet, it is preferable to use smaller-sized datagrams to ensure that they don’t need to be
further broken down along the route through a process called IP fragmentation.’ The kernel is able
to automatically determine the smallest MTU of an IP route and to automatically configure a TCP

connection to use it. This behavior is on by default. If you answer y to this option this feature will
be disabled.

35

Chapter 3. Configuringthe NetworkingHardware

If you do want to use smaller packet sizes for data sent to specific hosts (because, for example, the
data goes through a SLIP link), you can do so using the mss option of the route command, which is
briefly discussed at the end of this chapter:

[] IP: Disable Path MTU Discovery (normally enabled)

Security feature

The IP protocol supports a feature called Source Routing. Source routing allows you to specify
the route a datagram should follow by coding the route into the datagram itself. This was once
probably useful before routing protocols such as RIP and OSPF became commonplace. But today
it’s considered a security threat because it can provide clever attackers with a way of circumventing
certain types of firewall protection by bypassing the routing table of a router. You would normally
want to filter out source routed datagrams, so this option is normally enabled:

[*] IP: Drop source routed frames

Novell support

This option enables support for IPX, the transport protocol Novell Networking uses. Linux will
function quite happily as an IPX router and this support is useful in environments where you have
Novell fileservers. The NCP filesystem also requires IPX support enabled in your kernel; if you
wish to attach to and mount your Novell filesystems you must have this option enabled (we’ll dicuss
IPX and the NCP filesystem in Chapter 15):

<x> The IPX protocol

Amateur radio

These three options select support for the three Amateur Radio protocols supported by Linux:
AX.25, NetRom and Rose (we don’t describe them in this book, but they are covered in detail in the
AX25 HOWTO):

<*> Amateur Radio AX.25 Level 2
<*> Amateur Radio NET/ROM
<x> Amateur Radio X.25 PLP (Rose)

Linux supports another driver type: the dummy driver. The following question appears toward the
start of the device-driver section:

36

Chapter 3. Configuringthe NetworkingHardware

<x> Dummy net driver support

The dummy driver doesn’t really do much, but it is quite useful on standalone or PPP/SLIP hosts. It
is basically a masqueraded loopback interface. On hosts that offer PPP/SLIP but have no other
network interface, you want to have an interface that bears your IP address all the time. This is
discussed in a little more detail in Section 5.7.7" in Chapter 5. Note that today you can achieve the
same result by using the IP alias feature and configuring your IP address as an alias on the loopback
interface.

3.2. A Tour of Linux Network Devices

The Linux kernel supports a number of hardware drivers for various types of equipment. This section
gives a short overview of the driver families available and the interface names they use.

There is a number of standard names for interfaces in Linux, which are listed here. Most drivers support
more than one interface, in which case the interfaces are numbered, as in eth0 and eth1l:

lo
This is the local loopback interface. It is used for testing purposes, as well as a couple of network
applications. It works like a closed circuit in that any datagram written to it will immediately be
returned to the host’s networking layer. There’s always one loopback device present in the kernel,
and there’s little sense in having more.
ethO0, ethl, ...
These are the Ethernet card interfaces. They are used for most Ethernet cards, including many of
the parallel port Ethernet cards.
tr0, trl,...
These are the Token Ring card interfaces. They are used for most Token Ring cards, including
non-IBM manufactured cards.
s1l0,s11,...

These are the SLIP interfaces. SLIP interfaces are associated with serial lines in the order in which
they are allocated for SLIP.

ppp0, pppl, ...

These are the PPP interfaces. Just like SLIP interfaces, a PPP interface is associated with a serial
line once it is converted to PPP mode.

37

Chapter 3. Configuringthe NetworkingHardware

plip0, plipl,...

These are the PLIP interfaces. PLIP transports IP datagrams over parallel lines. The interfaces are
allocated by the PLIP driver at system boot time and are mapped onto parallel ports. In the 2.0.x
kernels there is a direct relationship between the device name and the I/O port of the parallel port,
but in later kernels the device names are allocated sequentially, just as for SLIP and PPP devices.

ax0, ax1l, ...

These are the AX.25 interfaces. AX.25 is the primary protocol used by amateur radio operators.
AX.25 interfaces are allocated and mapped in a similar fashion to SLIP devices.

There are many other types of interfaces available for other network drivers. We’ve listed only the most
common ones.

During the next few sections, we will discuss the details of using the drivers described previously. The
Networking HOWTO provides details on how to configure most of the others, and the AX25 HOWTO
explains how to configure the Amateur Radio network devices.

3.3. Ethernet Installation

The current Linux network code supports a large variety of Ethernet cards. Most drivers were written by
Donald Becker, who authored a family of drivers for cards based on the National Semiconductor 8390
chip; these have become known as the Becker Series Drivers. Many other developers have contributed
drivers, and today there are few common Ethernet cards that aren’t supported by Linux. The list of
supported Ethernet cards is growing all the time, so if your card isn’t supported yet, chances are it will be
soon.

Sometime earlier in Linux’s history we would have attempted to list all supported Ethernet cards, but that
would now take too much time and space. Fortunately, Paul Gortmaker maintains the Ethernet HOWTO,
which lists each of the supported cards and provides useful information about getting each of them
running under Linux.* It is posted monthly to the comp.os.linux.answers newsgroup, and is also available
on any of the Linux Documentation Project mirror sites.

Even if you are confident you know how to install a particular type of Ethernet card in your machine, it is
often worthwhile taking a look at what the Ethernet HOWTO has to say about it. You will find
information that extends beyond simple configuration issues. For example, it could save you a lot of
headaches to know the behavior of some DMA-based Ethernet cards that use the same DMA channel as
the Adaptec 1542 SCSI controller by default. Unless you move one of them to a different DMA channel,
you will wind up with the Ethernet card writing packet data to arbitrary locations on your hard disk.

To use any of the supported Ethernet cards with Linux, you may use a precompiled kernel from one of
the major Linux distributions. These generally have modules available for all of the supported drivers,

38

Chapter 3. Configuringthe NetworkingHardware

and the installation process usually allows you to select which drivers you want loaded. In the long term,
however, it’s better to build your own kernel and compile only those drivers you actually need; this saves
disk space and memory.

3.3.1. Ethernet Autoprobing

Many of the Linux Ethernet drivers are smart enough to know how to search for the location of your
Ethernet card. This saves you having to tell the kernel where it is manually. The Ethernet HOWTO lists
whether a particular driver uses autoprobing and in which order it searches the I/O address for the card.

There are three limitations to the autoprobing code. First, it may not recognize all cards properly. This is
especially true for some of the cheaper clones of common cards. Second, the kernel won’t autoprobe for
more than one card unless specifically instructed. This was a conscious design decision, as it is assumed
you will want to have control over which card is assigned to which interface. The best way to do this
reliably is to manually configure the Ethernet cards in your machine. Third, the driver may not probe at
the address that your card is configured for. Generally speaking, the drivers will autoprobe at the
addresses that the particular device is capable of being configured for, but sometimes certain addresses
are ignored to avoid hardware conflicts with other types of cards that commonly use that same address.

PCI network cards should be reliably detected. But if you are using more than one card, or if the
autoprobe should fail to detect your card, you have a way to explicitly tell the kernel about the card’s
base address and name.

At boot time you can supply arguments and information to the kernel that any of the kernel components
may read. This mechanism allows you to pass information to the kernel that Ethernet drivers can use to
locate your Ethernet hardware without making the driver probe.

If you use lilo to boot your system, you can pass parameters to the kernel by specifying them through the
append option in the 1i1o. conf file. To inform the kernel about an Ethernet device, you can pass the
following parameters:

ether=irqg, base_addr, [paraml,] [param2,] name

The first four parameters are numeric, while the last is the device name. The i rqg, base_addr, and name
parameters are required, but the two param parameters are optional. Any of the numeric values may be
set to zero, which causes the kernel to determine the value by probing.

The first parameter sets the IRQ assigned to the device. By default, the kernel will try to autodetect the
device’s IRQ channel. The 3¢503 driver, for example, has a special feature that selects a free IRQ from

39

Chapter 3. Configuringthe NetworkingHardware

the list 5, 9, 3, 4 and configures the card to use this line. The base_addr parameter gives the I/O base
address of the card; a value of zero tells the kernel to probe the addresses listed above.

Different drivers use the next two parameters differently. For shared-memory cards, such as the
WDB80x3, they specify starting and ending addresses of the shared memory area. Other cards commonly
use paraml to set the level at which debugging information is displayed. Values of 1 through 7 denote
increasing levels of verbosity, while 8 turns them off altogether; O denotes the default. The 3¢503 driver
uses param2 to choose between the internal transceiver (default) or an external transceiver (a value of 1).
The former uses the card’s BNC connector; the latter uses its AUI port. The param arguments need not
be included at all if you don’t have anything special to configure.

The first non-numeric argument is interpreted by the kernel as the device name. You must specify a
device name for each Ethernet card you describe.

If you have two Ethernet cards, you can have Linux autodetect one card and pass the second card’s
parameters with lilo, but you’ll probably want to manually configure both cards. If you decide to have the
kernel probe for one and manually configure the second, you must make sure the kernel doesn’t
accidentally find the second card first, or else the other one won’t be registered at all. You do this by
passing lilo a reserve option, which explicitly tells the kernel to avoid probing the I/O space taken up by
the second card. For instance, to make Linux install a second Ethernet card at 0x300 as eth1, you would
pass the following parameters to the kernel:

reserve=0x300, 32 ether=0,0x300,ethl

The reserve option makes sure no driver accesses the second card’s I/O space when probing for some
device. You may also use the kernel parameters to override autoprobing for etho:

reserve=0x340, 32 ether=0,0x340,ethO0

You can turn off autoprobing altogether. You might do this, for example, to stop a kernel probing for an
Ethernet card you might have temporarily removed. Disabling autoprobing is as simple as specifying a
base_addr argument of —1:

ether=0,-1,eth0

40

Chapter 3. Configuringthe NetworkingHardware

To supply these parameters to the kernel at boot time, you enter the parameters at the lilo "boot:" prompt.
To have lilo give you the "boot : " at the prompt, you must press any one of the Control, Alt or Shift keys
while lilo is booting. If you press the Tab key at the prompt, you will be presented with a list of kernels
that you may boot. To boot a kernel with parameters supplied, enter the name of the kernel you wish to
boot, followed by a space, then followed by the parameters you wish to supply. When you press the Enter
key, lilo will load that kernel and boot it with the parameters you’ve supplied.

To make this change occur automatically on each reboot, enter the parameters into the
/etc/1lilo.conf using the append= keyword. An example might look like this:

boot=/dev/hda
root=/dev/hda2
install=/boot/boot.b
map=/boot /map

vga=normal

delay=20
append="ether=10, 300, eth0"

image=/boot/vmlinuz-2.2.14
label=2.2.14
read-only

After you’ve edited 1i1o.conf, you must rerun the lilo command to activate the change.

3.4. The PLIP Driver

Parallel Line IP (PLIP) is a cheap way to network when you want to connect only two machines. It uses a
parallel port and a special cable, achieving speeds of 10 kilobytes per second to 20 kilobytes per second.

PLIP was originally developed by Crynwr, Inc. Its design at the time was rather ingenious (or, if you
prefer, a hack), because the original parallel ports on IBM PCs were designed to spend their time being
unidirectional printer ports; the eight data lines could be used only to send data from the PC to the
peripheral device, but not the other way around.’ The Cyrnwr PLIP design worked around this limitation
by using the port’s five status lines for input, which limited it to transferring all data as nibbles (half
bytes) only, but allowed for bidirectional transfer. This mode of operation was called PLIP “mode 0.”
Today, the parallel ports supplied on PC hardware cater to full bidirectional 8-bit data transfer, and PLIP
has been extended to accomodate this with the addition of PLIP “mode 1.”

Linux kernels up to and including Version 2.0 support PLIP mode 0 only, and an enhanced parallel port
driver exists as a patch against the 2.0 kernel and as a standard part of the 2.2 kernel code to provide
PLIP mode 1 operation, too. ¢ Unlike earlier versions of the PLIP code, the driver now attempts to be

41

Chapter 3. Configuringthe NetworkingHardware

compatible with the PLIP implementations from Crynwr, as well as the PLIP driver in NCSA telnet.” To
connect two machines using PLIP, you need a special cable sold at some shops as a Null Printer or Turbo
Laplink cable. You can, however, make one yourself fairly easily; Appendix B shows you how.

The PLIP driver for Linux is the work of almost countless persons. It is currently maintained by Niibe
Yutaka.® If compiled into the kernel, it sets up a network interface for each of the possible printer ports,
with p1ip0 corresponding to parallel port 1p0, plipl corresponding to 1p1, etc. The mapping of
interfaces to ports differs in the 2.0 kernels and the 2.2 kernels. In the 2.0 kernels, the mapping was
hardwired in the drivers/net/Spacd. c file in the kernel source. The default mappings in this file are:

Interface 1/0 Port IRQ
plip0 0x3BC
plipl 0x378
plip2 0x278

If you configured your printer port in a different way, you must change these values in
drivers/net/Space.c in the Linux kernel source and build a new kernel.

In the 2.2 kernels, the PLIP driver uses the “parport” parallel port sharing driver developed by Philip
Blundell.’ The new driver allocates the PLIP network device names serially, just as for the Ethernet or
PPP drivers, so the first PLIP device created is p1ip0, the second is plip1, and so on. The physical
parallel port hardware is also allocated serially. By default, the parallel port driver will attempt to detect
your parallel port hardware with an autoprobe routine, recording the physical device information in the
order found. It is better practice to explicitly tell the kernel the physical I/O parameters. You can do this
by supplying arguments to the parport_pc.o module as you load it, or if you have compiled the driver
into your kernel, using lilo to supply arguments to the kernel at boot time. The IRQ setting of any device
may be changed later by writing the new IRQ value to the related /proc/parport/«/irq file.

Configuring the physical I/O parameters in a 2.2 kernel when loading the module is straightforward. For
instance, to tell the driver that you have two PC-style parallel ports at I/O addresses 0x278 and 0c378
and IRQs 5 and 7, respectively, you would load the module with the following arguments:

modprobe parport_pc io=0x278,0x378 irg=5,7
The corresponding arguments to pass to the kernel for a compiled-in driver are:
parport=0x278,5 parport=0x378,7

You would use the lilo append keyword to have these arguments passed to the kernel automatically at
boot time.

When the PLIP driver is initialized, either at boot time if it is built-in, or when the plip .o module is
loaded, each of the parallel ports will have a p1ip network device associated with it. p1ip0 will be
assigned to the first parallel port device, p1ip1 the second, and so on. You can manually override this
automatic assignment using another set of kernel arguments. For instance, to assign parport0 to
network device plip0, and parport1 to network device plipl, you would use kernel arguments of:

42

Chapter 3. Configuringthe NetworkingHardware

plip=parportl plip=parportO

This mapping does not mean, however, that you cannot use these parallel ports for printing or other
purposes. The physical parallel port devices are used by the PLIP driver only when the corresponding
interface is configured up.

3.5. The PPP and SLIP Drivers

Point-to-Point Protocol (PPP) and Serial Line IP (SLIP) are widely used protocols for carrying IP packets
over a serial link. A number of institutions offer dialup PPP and SLIP access to machines that are on the
Internet, thus providing IP connectivity to private persons (something that’s otherwise hardly affordable).

No hardware modifications are necessary to run PPP or SLIP; you can use any serial port. Since serial
port configuration is not specific to TCP/IP networking, we have devoted a separate chapter to this.
Please refer to Chapter 4, for more information. We cover PPP in detail in Chapter 8, and SLIP in
Chapter 7.

3.6. Other Network Types

Notes

Most other network types are configured similarly to Ethernet. The arguments passed to the loadable
modules will be different and some drivers may not support more than one card, but just about
everything else is the same. Documentation for these cards is generally available in the
/usr/src/linux /Documentation/networking/ directory of the Linux kernel source.

1. IRQs 2 and 9 are the same because the IBM PC design has two cascaded interrupt processors with
eight IRQs each; the secondary processor is connected to IRQ 2 of the primary one.

2. People should use development kernels and report bugs if they are found; this is a very useful thing
to do if you have a machine you can use as a test machine. Instructions on how to report bugs are
detailed in /usr/src/linux/REPORTING-BUGS in the Linux kernel source.

3. Remember, the IP protocol can be carried over many different types of network, and not all network
types will support packet sizes as large as Ethernet.

4. Paul can be reached at gpg109 @rsphy1.anu.edu.au.

5. Fight to clear the hacking name! Always use “cracker” when you are referring to people who are
consciously trying to defeat the security of a system, and “hacker” when you are referring to people
who have found a clever way of solving a problem. Hackers can be crackers, but the two should

43

Chapter 3. Configuringthe NetworkingHardware

never be confused. Consult the New Hackers Dictionary (popularly found as the Jargon file) for a
more complete understanding of the terms.

The enhanced parallel port adaptor patch for 2.0 kernel is available from
http://www.cyberelk.demon.co.uk/parport.html.

NCSA telnet is a popular program for DOS that runs TCP/IP over Ethernet or PLIP, and supports
telnet and FTP.

Niibe can be reached at gniibe @mri.co.jp.

You can reach Philip at Philip. Blundell @ pobox.com.

44

Chapter 4. Configuring the Serial Hardware

The Internet is growing at an incredible rate. Much of this growth is attributed to Internet users who can’t
afford high-speed permanent network connections and who use protocols such as SLIP, PPP, or UUCP to
dial in to a network provider to retrieve their daily dose of email and news.

This chapter is intended to help all people who rely on modems to maintain their link to the outside
world. We won’t cover the mechanics of how to configure your modem (the manual that came with it
will tell you more about it than we can), but we will cover most of the Linux-specific aspects of
managing devices that use serial ports. Topics include serial communications software, creating the serial
device files, serial hardware, and configuring serial devices using the setserial and stty commands. Many
other related topics are covered in the Serial HOWTO by David Lawyer.'

4.1. Communications Software for Modem Links

There are a number of communications packages available for Linux. Many of these packages are
terminal programs, which allow a user to dial in to another computer as if she were sitting in front of a
simple terminal. The traditional terminal program for Unix-like environments is kermit. It is, however,
fairly ancient now, and would probably be considered difficult to use. There are more comfortable
programs available that support features, like telephone-dialing dictionaries, script languages to automate
dialing and logging in to remote computer systems, and a variety of file exchange protocols. One of these
programs is minicom, which was modeled after some of the most popular DOS terminal programs. X11
users are accommodated, too. seyon is a fully featured X11-based communications program.

Terminal programs aren’t the only type of serial communication programs available. Other programs let
you connect to a host and download news and email in a single bundle, to read and reply later at your
leisure. This can save a lot of time, and is especially useful if you are unfortunate enough to live in an
area where your local calls are time-charged. All of the reading and replying time can be spent offline,
and when you are ready, you can redial and upload your responses in a single bundle. This all consumes
a bit more hard disk because all of the messages have to be stored to your disk before you can read them,
but this could be a reasonable trade-off at today’s hard drive prices.

UUCP epitomizes this communication software style. It is a program suite that copies files from one host
to another and executes programs on a remote host. It is frequently used to transport mail or news in
private networks. Ian Taylor’s UUCP package, which also runs under Linux, is described in detail in
Chapter 16. Other noninteractive communications software is used throughout networks such as Fidonet.
Fidonet application ports like ifmail are also available, although we expect that not many people still use
them.

PPP and SLIP are in between, allowing both interactive and noninteractive use. Many people use PPP or
SLIP to dial in to their campus network or other Internet Service Provider to run FTP and read web
pages. PPP and SLIP are also, however, commonly used over permanent or semipermanent connections

45

Chapter 4. Configuring the Serial Hardware

for LAN-to-LAN coupling, although this is really only interesting with ISDN or other high-speed
network connections.

4.2. Introduction to Serial Devices

The Unix kernel provides devices for accessing serial hardware, typically called #y devices (pronounced
as it is spelled: T-T-Y). This is an abbreviation for Teletype device, which used to be one of the major
manufacturers of terminal devices in the early days of Unix. The term is used now for any
character-based data terminal. Throughout this chapter, we use the term to refer exclusively to the Linux
device files rather than the physical terminal.

Linux provides three classes of tty devices: serial devices, virtual terminals (all of which you can access
in turn by pressing Alt-F1 through Alt-Frnn on the local console), and pseudo-terminals (similar to a
two-way pipe, used by applications such as X11). The former were called tty devices because the
original character-based terminals were connected to the Unix machine by a serial cable or telephone
line and modem. The latter two were named after the tty device because they were created to behave in a
similar fashion from the programmer’s perspective.

SLIP and PPP are most commonly implemented in the kernel. The kernel doesn’t really treat the #ty
device as a network device that you can manipulate like an Ethernet device, using commands such as
ifconfig. However, it does treat tty devices as places where network devices can be bound. To do this, the
kernel changes what is called the “line discipline” of the tty device. Both SLIP and PPP are line
disciplines that may be enabled on tty devices. The general idea is that the serial driver handles data
given to it differently, depending on the line discipline it is configured for. In its default line discipline,
the driver simply transmits each character it is given in turn. When the SLIP or PPP line discipline is
selected, the driver instead reads a block of data, wraps a special header around it that allows the remote
end to identify that block of data in a stream, and transmits the new data block. It isn’t too important to
understand this yet; we’ll cover both SLIP and PPP in later chapters, and it all happens automatically for
you anyway.

4.3. Accessing Serial Devices

Like all devices in a Unix system, serial ports are accessed through device special files, located in the
/dev directory. There are two varieties of device files related to serial drivers, and there is one device file
of each type for each port. The device will behave slightly differently, depending on which of its device
files we open. We’ll cover the differences because it will help you understand some of the configurations
and advice that you might see relating to serial devices, but in practice you need to use only one of these.
At some point in the future, one of them may even disappear completely.

The most important of the two classes of serial device has a major number of 4, and its device special
files are named ttyso0, ttysS1, etc. The second variety has a major number of 5, and was designed for
use when dialing out (calling out) through a port; its device special files are called cua0, cual, etc. In

46

Chapter 4. Configuring the Serial Hardware

the Unix world, counting generally starts at zero, while laypeople tend to start at one. This creates a
small amount of confusion for people because coM1 : is represented by /dev/ttyS0, COM2: by
/dev/ttyS1, etc. Anyone familiar with IBM PC-style hardware knows that coM3 : and greater were
never really standardized anyway.

The cua, or “callout,” devices were created to solve the problem of avoiding conflicts on serial devices
for modems that have to support both incoming and outgoing connections. Unfortunately, they’ve created
their own problems and are now likely to be discontinued. Let’s briefly look at the problem.

Linux, like Unix, allows a device, or any other file, to be opened by more than one process
simultaneously. Unfortunately, this is rarely useful with tty devices, as the two processes will almost
certainly interfere with each other. Luckily, a mechanism was devised to allow a process to check if a tty
device had already been opened by another device before opening it. The mechanism uses what are
called lock files. The idea was that when a process wanted to open a tty device, it would check for the
existence of a file in a special location, named similarly to the device it intends to open. If the file does
not exist, the process creates it and opens the tty device. If the file does exist, the process assumes
another process already has the tty device open and takes appropriate action. One last clever trick to
make the lock file management system work was writing the process ID (pid) of the process that had
created the lock file into the lock file itself; we’ll talk more about that in a moment.

The lock file mechanism works perfectly well in circumstances in which you have a defined location for
the lock files and all programs know where to find them. Alas, this wasn’t always the case for Linux. It
wasn’t until the Linux Filesystem Standard defined a standard location for lock files when tty lock files
began to work correctly. At one time there were at least four, and possibly more locations chosen by
software developers to store lock files: /usr/spool/locks/, /var/spool/locks/, /var/lock/,
and /usr/lock/. Confusion caused chaos. Programs were opening lock files in different locations that
were meant to control a single tty device; it was as if lock files weren’t being used at all.

The cua devices were created to provide a solution to this problem. Rather than relying on the use of
lock files to prevent clashes between programs wanting to use the serial devices, it was decided that the
kernel could provide a simple means of arbitrating who should be given access. If the ttys device were
already opened, an attempt to open the cua would result in an error that a program could interpret to
mean the device was already being used. If the cua device were already open and an attempt was made
to open the ttys, the request would block; that is, it would be put on hold and wait until the cua device
was closed by the other process. This worked quite well if you had a single modem that you had
configured for dial-in access and you occasionally wanted to dial out on the same device. But it did not
work very well in environments where you had multiple programs wanting to call out on the same
device. The only way to solve the contention problem was to use lock files! Back to square one.

Suffice it to say that the Linux Filesystem Standard came to the rescue and now mandates that lock files
be stored in the /var/lock directory, and that by convention, the lock file name for the ttys1 device,
for instance, is LCK. . ttyS1. The cua lock files should also go in this directory, but use of cua devices
is now discouraged.

The cua devices will probably still be around for some time to provide a period of backward

47

Chapter 4. Configuring the Serial Hardware

compatibility, but in time they will be retired. If you are wondering what to use, stick to the ttys device
and make sure that your system is Linux FSSTND compliant, or at the very least that all programs using
the serial devices agree on where the lock files are located. Most software dealing with serial tty devices
provides a compile-time option to specify the location of the lock files. More often than not, this will
appear as a variable called something like LOCKDIR in the Makefile or in a configuration header file. If
you’re compiling the software yourself, it is best to change this to agree with the FSSTND-specified
location. If you’re using a precompiled binary and you’re not sure where the program will write its lock
files, you can use the following command to gain a hint:

strings binaryfile | grep lock

If the location found does not agree with the rest of your system, you can try creating a symbolic link
from the lock directory that the foreign executable wants to use back to /var/lock/. This is ugly, but it
will work.

4.3.1. The Serial Device Special Files

Minor numbers are identical for both types of serial devices. If you have your modem on one of the ports
COM1: through COM4:, its minor number will be the COM port number plus 63. If you are using
special serial hardware, such as a high-performance multiple port serial controller, you will probably
need to create special device files for it; it probably won’t use the standard device driver. The
Serial-HOWTO should be able to assist you in finding the appropriate details.

Assume your modem is on COM2:. Its minor number will be 65, and its major number will be 4 for
normal use. There should be a device called ttys1 that has these numbers. List the serial ttys in the
/dev/ directory. The fifth and sixth columns show the major and minor numbers, respectively:

$ 1s -1 /dev/ttySx

0 crw—rw———-— 1 uucp dialout 4, 64 Oct 13 1997 /dev/ttySO
0 crw—rw———-— 1 uucp dialout 4, 65 Jan 26 21:55 /dev/ttySl
0 crw—rw———-— 1 uucp dialout 4, 66 Oct 13 1997 /dev/ttyS2
0 crw—rw———— 1 uucp dialout 4, 67 Oct 13 1997 /dev/ttyS3

If there is no device with major number 4 and minor number 65, you will have to create one. Become the
superuser and type:

mknod -m 666 /dev/ttySl c 4 65
chown uucp.dialout /dev/ttyS1l

The various Linux distributions use slightly differing strategies for who should own the serial devices.
Sometimes they will be owned by root, and other times they will be owned by another user, such as uucp

48

Chapter 4. Configuring the Serial Hardware

in our example. Modern distributions have a group specifically for dial-out devices, and any users who
are allowed to use them are added to this group.

Some people suggest making /dev/modem a symbolic link to your modem device so that casual users
don’t have to remember the somewhat unintuitive ttyS1. However, you cannot use modem in one
program and the real device file name in another. Their lock files would have different names and the
locking mechanism wouldn’t work.

4.4. Serial Hardware

RS-232 is currently the most common standard for serial communications in the PC world. It uses a
number of circuits for transmitting single bits, as well as for synchronization. Additional lines may be
used for signaling the presence of a carrier (used by modems) and for handshaking. Linux supports a
wide variety of serial cards that use the RS-232 standard.

Hardware handshake is optional, but very useful. It allows either of the two stations to signal whether it
is ready to receive more data, or if the other station should pause until the receiver is done processing the
incoming data. The lines used for this are called “Clear to Send” (CTS) and “Ready to Send” (RTS),
respectively, which explains the colloquial name for hardware handshake: “RTS/CTS.” The other type of
handshake you might be familiar with is called “XON/XOFF” handshaking. XON/XOFF uses two
nominated characters, conventionally Ctrl-S and Ctrl-Q, to signal to the remote end that it should stop
and start transmitting data, respectively. While this method is simple to implement and okay for use by
dumb terminals, it causes great confusion when you are dealing with binary data, as you may want to
transmit those characters as part of your data stream, and not have them interpreted as flow control
characters. It is also somewhat slower to take effect than hardware handshake. Hardware handshake is
clean, fast, and recommended in preference to XON/XOFF when you have a choice.

In the original IBM PC, the RS-232 interface was driven by a UART chip called the 8250. PCs around
the time of the 486 used a newer version of the UART called the 16450. It was slightly faster than the
8250. Nearly all Pentium-based machines have been supplied with an even newer version of the UART
called the 16550. Some brands (most notably internal modems equipped with the Rockwell chip set) use
completely different chips that emulate the behavior of the 16550 and can be treated similarly. Linux
supports all of these in its standard serial port driver.?

The 16550 was a significant improvement over the 8250 and the 16450 because it offered a 16-byte FIFO
buffer. The 16550 is actually a family of UART devices, comprising the 16550, the 16550A, and the
16550AFN (later renamed PC16550DN). The differences relate to whether the FIFO actually works; the
16550AFN is the one that is sure to work. There was also an NS16550, but its FIFO never really worked
either.

The 8250 and 16450 UARTS had a simple 1-byte buffer. This means that a 16450 generates an interrupt

49

Chapter 4. Configuring the Serial Hardware

for every character transmitted or received. Each interrupt takes a short period of time to service, and this
small delay limits 16450s to a reliable maximum bit speed of about 9,600 bps in a typical ISA bus
machine.

In the default configuration, the kernel checks the four standard serial ports, COM1: through COM4.:.
The kernel is also able to automatically detect what UART is used for each of the standard serial ports,
and will make use of the enhanced FIFO buffer of the 16550, if it is available.

4.5. Using the Configuration Utilities

Now let’s spend some time looking at the two most useful serial device configuration utilities: setserial
and stty.

4.5.1. The setserial Command

The kernel will make its best effort to correctly determine how your serial hardware is configured, but the
variations on serial device configuration makes this determination difficult to achieve 100 percent
reliably in practice. A good example of where this is a problem is the internal modems we talked about
earlier. The UART they use has a 16-byte FIFO buffer, but it looks like a 16450 UART to the kernel
device driver: unless we specifically tell the driver that this port is a 16550 device, the kernel will not
make use of the extended buffer. Yet another example is that of the dumb 4-port cards that allow sharing
of a single IRQ among a number of serial devices. We may have to specifically tell the kernel which IRQ
port it’s supposed to use, and that IRQs may be shared.

setserial was created to configure the serial driver at runtime. The setserial command is most commonly
executed at boot time from a script called 0setserial on some distributions, and rc.serial on
others. This script is charged with the responsibility of initializing the serial driver to accommodate any
nonstandard or unusual serial hardware in the machine.

The general syntax for the setserial command is:
setserial device [parameters]
in which the device is one of the serial devices, such as #yS0.

The setserial command has a large number of parameters. The most common of these are described in
Table 4-1. For information on the remainder of the parameters, you should refer to the setserial manual

page.

Table 4-1. setserial Command-Line Parameters

50

Chapter 4. Configuring the Serial Hardware

Parameter Description

port port_number

-
T

P S e S S~ S}
. ‘%3

51

Chapter 4. Configuring the Serial Hardware

Parameter

Description

irg num

52

Chapter 4. Configuring the Serial Hardware

Parameter Description

uart uart_type

53

Chapter 4. Configuring the Serial Hardware

Parameter Description

fourport
Spec-
i

fiy-
ing
this
pa-
ram-
a-

ter

in-
tructs
he

S
rial
driver
that
this
port
is
one
port

q
q
AST
Four-
port
gard.

54

Chapter 4. Configuring the Serial Hardware

Parameter

Description

spd_hi

Pro-
rram

UJART
Ise
peed
7.6
bps

vhen

1r0-
€SS

juests
8.4
bps.

L =SS W N . S = W . — S P R — S 3 S o S 7/, W VS S . S e S '/ W _

55

Chapter 4. Configuring the Serial Hardware

Parameter

Description

spd_vhi

Pro-
rram

UJART
Ise
peed
15
bps

vhen

1r0-
€SS

juests
8.4
bps.

L =SS W N S = W . — S WP R — S SY S 7/, B - S S . S N . /- W _

56

Chapter 4. Configuring the Serial Hardware

Parameter

Description

spd_normal

Pro-
rram

UJART

Ise
he
Je-
ault
speed
f
8.4

bps
vhen

-
juested.
[his

a-

— et @ = 30 = o= = O

PO N . N S R G S
=2
(¢}

o v
=

=t fan) | e] -
Q
=
[}
o

rice.

Chapter 4. Configuring the Serial Hardware

Parameter

Description

auto_irqg

Chapter 4. Configuring the Serial Hardware

Parameter Description

autoconfig

er
nust

ypec-
fied

on-
junc-
ion
vith

q
J
t
\'
i
port
B
1]
€
i

Chapter 4. Configuring the Serial Hardware

Parameter

Description

skip_test

n-

Jur-

ng

uto-
onfiguration.
['his

60

Chapter 4. Configuring the Serial Hardware

Parameter

Description

A typical and simple rc file to configure your serial ports at boot time might look something like that

shown in Example 4-1. Most Linux distributions will include something slightly more sophisticated than

this one.

Example 4-1. Example rc.serial setserial Commands

/etc/rc.serial - serial line configuration script.

#

Configure serial devices
/sbin/setserial /dev/ttyS0 auto_irqg
/sbin/setserial /dev/ttySl auto_irqg
/sbin/setserial /dev/ttyS2 auto_irqg
/sbin/setserial /dev/ttyS3 auto_irqg
#

skip_test
skip_test
skip_test
skip_test

Display serial device configuration

/sbin/setserial -bg /dev/ttySx

The -bg /dev/ttyS« argument in the last command will print a neatly formatted summary of the

autoconfig
autoconfig
autoconfig
autoconfig

hardware configuration of all active serial devices. The output will look like that shown in Example 4-2.

Example 4-2. Output of setserial -bg /dev/ttyS Command

/dev/ttyS0 at 0x03f8 (irg
/dev/ttySl at 0x02f8 (irg

4) is a

3) 1is a

4.5.2. The stty Command

The name stty probably means “set tty,” but the stty command can also be used to display a terminal’s

16550A
16550A

configuration. Perhaps even more so than setserial, the stty command provides a bewildering number of
characteristics you can configure. We’ll cover the most important of these in a moment. You can find the

rest described in the stty manual page.

The stty command is most commonly used to configure terminal parameters, such as whether characters

will be echoed or what key should generate a break signal. We explained earlier that serial devices are tty

devices and the stty command is therefore equally applicable to them.

One of the more important uses of the stty for serial devices is to enable hardware handshaking on the
device. We talked briefly about hardware handshaking earlier. The default configuration for serial
devices is for hardware handshaking to be disabled. This setting allows “three wire” serial cables to

61

Chapter 4. Configuring the Serial Hardware

work; they don’t support the necessary signals for hardware handshaking, and if it were enabled by
default, they’d be unable to transmit any characters to change it.

Surprisingly, some serial communications programs don’t enable hardware handshaking, so if your
modem supports hardware handshaking, you should configure the modem to use it (check your modem
manual for what command to use), and also configure your serial device to use it. The stty command has
a crtscts flag that enables hardware handshaking on a device; you’ll need to use this. The command is
probably best issued from the rc.serial file (or equivalent) at boot time using commands like those
shown in Example 4-3.

Example 4-3. Example rc.serial stty Commands

#

stty crtscts < /dev/ttysO
stty crtscts < /dev/ttySl
stty crtscts < /dev/ttyS2
stty crtscts < /dev/ttyS3

#

The stty command works on the current terminal by default, but by using the input redirection (“<”)
feature of the shell, we can have stty manipulate any tty device. It’s a common mistake to forget whether
you are supposed to use “<” or “>"’; modern versions of the stty command have a much cleaner syntax
for doing this. To use the new syntax, we’d rewrite our sample configuration to look like that shown in
Example 4-4.

Example 4-4. Example rc.serial stty Commands Using Modern Syntax

#
stty crtscts -F /dev/ttyS0O
stty crtscts -F /dev/ttySl
stty crtscts -F /dev/ttyS2
stty crtscts -F /dev/ttyS3
#

We mentioned that the stty command can be used to display the terminal configuration parameters of a
tty device. To display all of the active settings on a tty device, use:

$ stty -a -F /dev/ttySl

The output of this command, shown in Example 4-5, gives you the status of all flags for that device; a
flag shown with a preceding minus, as in —crtscts, means that the flag has been turned off.

62

Chapter 4. Configuring the Serial Hardware

Example 4-5. Output of stty -a Command

speed 19200 baud; rows 0; columns 0; line = 0;

intr = ~C; quit = "\; erase = *?; kill = ~U; eof = "D; eol = <undef>;
eol2 = <undef>; start = "Q; stop = "S; susp = "Z; rprnt = "R;
werase = "W; lnext = "V; flush = "0; min = 1; time = 0;

—-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscts

—ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr -icrnl -ixon
—ixoff -iuclc -ixany -imaxbel

-opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0O tab0
bsO vt0 ££0

—-isig —icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop
—echoprt echoctl echoke

A description of the most important of these flags is given in Table 4-2. Each of these flags is enabled by
supplying it to stty and disabled by supplying it to stty with the — character in front of it. Thus, to disable
hardware handshaking on the ttys0 device, you would use:

S stty -crtscts -F /dev/ttySO

Table 4-2. stty Flags Most Relevant to Configuring Serial Devices

Flags Description

10 T T e - N e N ¢ 5 W S e S o

et

ine
peed

=

its
er
ec-
nd.

63

Chapter 4. Configuring the Serial Hardware

Flags

Description

crtsdts

fn-
ble/Disable
1ard-

vare

1and-

hak-

ng.

e 5 W e el B e o N _ |

ixon

En-
ble/Disable
XON/XOFF
low

on-

rol.

= O = Nd O e

64

Chapter 4. Configuring the Serial Hardware

Flags

Description

clocal

fn-
ble/Disable
no-

lem

on-

rol

ig-

1als

uch

S

DTR/DTS
nd

DCD.

[his

5
lec-

ary

L R CR B N O~ R R 07 S « N S — U B — T < S — T S 7, B . S 7 M e S o W o WO . S S — |

'—(mz—rh—tm'—th:-nrr‘z-r‘h'—tm('

65

Chapter 4. Configuring the Serial Hardware

Flags

Description

cs5 cs6 cs7 cs8

et

S

wum-
cr

N

1

b

q
data
bits
1l
3
i

parodd

VR S N R S N S N — T VR — S N N
[=x
=
=
=
aQ

66

Chapter 4. Configuring the Serial Hardware

Flags Description

parenb

[- S VRN S]
g

67

Chapter 4. Configuring the Serial Hardware

Flags

Description

cstopb

legated,
ne

top

it

v—he—rmhh-{!-r‘mﬁv-(b—-»—ht—rét-rmﬁh-tr—r‘mt-rﬁf-'mh-{
=
]
=]

=
»
[}
[

68

Chapter 4. Configuring the Serial Hardware

Flags Description

echo
fn-
ble/Disable
cho-

The next example combines some of these flags and sets the ttyS0 device to 19,200 bps, 8 data bits, no
parity, and hardware handshaking with echo disabled:

S stty 19200 cs8 -parenb crtscts -echo -F /dev/ttySO

4.6. Serial Devices and the login: Prompt

It was once very common that a Unix installation involved one server machine and many “dumb”
character mode terminals or dial-up modems. Today that sort of installation is less common, which is
good news for many people interested in operating this way, because the “dumb” terminals are now very
cheap to acquire. Dial-up modem configurations are no less common, but these days they would
probably be used to support a SLIP or PPP login (discussed in Chapter 7 and Chapter 8) than to be used
for a simple login. Nevertheless, each of these configurations can make use of a simple program called a
getty program.

The term getty is probably a contraction of “get tty.” A getty program opens a serial device, configures it
appropriately, optionally configures a modem, and waits for a connection to be made. An active
connection on a serial device is usually indicated by the Data Carrier Detect (DCD) pin on the serial
device being raised. When a connection is detected, the getty program issues a 1ogin: prompt, and then

69

Chapter 4. Configuring the Serial Hardware

invokes the login program to handle the actual system login. Each of the virtual terminals (e.g.,
/dev/ttyl)in Linux has a getty running against it.

There are a number of different getty implementations, each designed to suit some configurations better
than others. The getty that we’ll describe here is called mgetty. It is quite popular because it has all sorts
of features that make it especially modem-friendly, including support for automatic fax programs and
voice modems. We’ll concentrate on configuring mgetty to answer conventional data calls and leave the
rest for you to explore at your convenience.

4.6.1. Configuring the mgetty Daemon

The mgetty daemon is available in source form from ftp://alpha.greenie.net/pub/mgetty/source/, and is
available in just about all Linux distributions in prepackaged form. The mgetty daemon differs from
most other getty implementations in that it has been designed specifically for Hayes-compatible
modems. It still supports direct terminal connections, but is best suited for dialup applications. Rather
than using the DCD line to detect an incoming call, it listens for the RING message generated by modern
modems when they detect an incoming call and are not configured for auto-answer.

The main executable program is called /usr/sbin/mgetty, and its main configuration file is called
/etc/mgetty/mgetty.config. There are a number of other binary programs and configuration files
that cover other mgetty features.

For most installations, configuration is a matter of editing the /etc/mgetty/ mgetty.config file and
adding appropriate entries to the /etc/inittab file to execute mgetty automatically.

Example 4-6 shows a very simple mgetty configuration file. This example configures two serial devices.
The first, /dev/ttyS0, supports a Hayes-compatible modem at 38,400 bps. The second, /dev/ttySs0,
supports a directly connected VT100 terminal at 19,200 bps.

Example 4-6. Sample /etc/mgetty/mgetty.config File

mgetty configuration file
this is a sample configuration file, see mgetty.info for details

comment lines start with a "#", empty lines are ignored

S oS W H 4 W

=

In this section, you put the global defaults, per-port stuff is below

H oW

access the modem(s) with 38400 bps
speed 38400

70

Chapter 4. Configuring the Serial Hardware

#
set the global debug level to "4" (default from policy.h)

Here you can put things that are valid only for one line, not the others
#
#
Hayes modem connected to ttySO: don’t do fax, less logging
#
port ttySO
debug 3
data-only y
#
direct connection of a VT100 terminal which doesn’t like DTR drops
#
port ttySl
direct vy
speed 19200
toggle-dtr n

The configuration file supports global and port-specific options. In our example we used a global option
to set the speed to 38,400 bps. This value is inherited by the ttyso port. Ports we apply mgetty to use
this speed setting unless it is overwritten by a port-specific speed setting, as we have done in the ttysS1
configuration.

The debug keyword controls the verbosity of mgetty logging. The data-only keyword in the ttyS0
configuration causes mgetty to ignore any modem fax features, to operate just as a data modem. The
direct keyword in the ttys1 configuration instructs mgetty not to attempt any modem initialization on
the port. Finally, the toggle-dtr keyword instructs mgetty not to attempt to hang up the line by
dropping the DTR (Data Terminal Ready) pin on the serial interface; some terminals don’t like this to
happen.

You can also choose to leave the mgetty.config file empty and use command-line arguments to
specify most of the same parameters. The documentation accompanying the application includes a
complete description of the mgetty configuration file parameters and command-line arguments. See the
following example.

We need to add two entries to the /etc/inittab file to activate this configuration. The inittab file is
the configuration file of the Unix System V init command. The init command is responsible for system
initialization; it provides a means of automatically executing programs at boot time and re-executing
them when they terminate. This is ideal for the goals of running a getty program.

71

Notes

Chapter 4. Configuring the Serial Hardware

T0:23:respawn:/sbin/mgetty ttySO
Tl:23:respawn:/sbin/mgetty ttySl

Each line of the /etc/inittab file contains four fields, separated by colons. The first field is an
identifier that uniquely labels an entry in the file; traditionally it is two characters, but modern versions
allow four. The second field is the list of run levels at which this entry should be active. A run level is a
means of providing alternate machine configurations and is implemented using trees of startup scripts
stored in directories called /etc/rcl.d, /etc/rc2.d, etc. This feature is typically implemented very
simply, and you should model your entries on others in the file or refer to your system documentation for
more information. The third field describes when to take action. For the purposes of running a getty
program, this field should be set to respawn, meaning that the command should be re-executed
automatically when it dies. There are several other options, as well, but they are not useful for our
purposes here. The fourth field is the actual command to execute; this is where we specify the mgetty
command and any arguments we wish to pass it. In our simple example we’re starting and restarting
mgetty whenever the system is operating at either of run levels two or three, and are supplying as an
argument just the name of the device we wish it to use. The mgetty command assumes the /dev/, so we
don’t need to supply it.

This chapter was a quick introduction to mgetty and how to offer login prompts to serial devices. You
can find more extensive information in the Serial-HOWTO.

After you’ve edited the configuration files, you need to reload init to make the changes take effect.
Simply send a hangup signal to the init process; it always has a process ID of one, so you can use the
following command safely:

kill -HUP 1

1. David can be reached at bf347 @lafn.org.

2. Note that we are not talking about WinModem™ here! WinModems have very simple hardware and
rely completely on the main CPU of your computer instead of dedicated hardware to do all of the
hard work. If you’re purchasing a modem, it is our strongest recommendation to not purchase such a
modem; get a real modem. You may find Linux support for WinModems, but that makes them only a
marginally more attractive solution.

72

Chapter 5. Configuring TCP/IP Networking

In this chapter, we walk you through all the necessary steps to set up TCP/IP networking on your
machine. Starting with the assignment of IP addresses, we slowly work our way through the
configuration of TCP/IP network interfaces and introduce a few tools that come in handy when hunting
down network installation problems.

Most of the tasks covered in this chapter will generally have to be done only once. Afterward, you have
to touch most configuration files only when adding a new system to your network or when you
reconfigure your system entirely. Some of the commands used to configure TCP/IP, however, have to be
executed each time the system is booted. This is usually done by invoking them from the system
/etc/rc* scripts.

Commonly, the network-specific part of this procedure is contained in a script. The name of this script
varies in different Linux distributions. In many older Linux distributions, it is known as rc.net or
rc.inet. Sometimes you will also see two scripts named rc.inetl and rc.inet?2 ; the former
initializes the kernel part of networking and the latter starts basic networking services and applications.
In modern distributions, the rc files are structured in a more sophisticated arrangement; here you may
find scripts in the /etc/init.d/ (or /etc/rc.d/init.d/) directory that create the network devices
and other rc files that run the network application programs. This book’s examples are based on the
latter arrangement.

This chapter discusses parts of the script that configure your network interfaces, while applications will
be covered in later chapters. After finishing this chapter, you should have established a sequence of
commands that properly configure TCP/IP networking on your computer. You should then replace any
sample commands in your configuration scripts with your commands, make sure the script is executed
from the basic rc script at startup time, and reboot your machine. The networking rc scripts that come
along with your favorite Linux distribution should provide a solid example from which to work.

5.1. Mounting the /proc Filesystem

Some of the configuration tools of the Linux NET-2 and NET-3 release rely on the /proc filesystem for
communicating with the kernel. This interface permits access to kernel runtime information through a
filesystem-like mechanism. When mounted, you can list its files like any other filesystem, or display their
contents. Typical items include the 1oadavg file, which contains the system load average, and meminfo,
which shows current core memory and swap usage.

To this, the networking code adds the net directory. It contains a number of files that show things like
the kernel ARP tables, the state of TCP connections, and the routing tables. Most network administration
tools get their information from these files.

73

Chapter 5. Configuring TCP/IP Networking

The proc filesystem (or procfs, as it is also known) is usually mounted on /proc at system boot time.
The best method is to add the following line to /etc/fstab:

procfs mount point:
none /proc proc defaults

Then execute mount /proc from your /etc/rc script.

The proc£s is now configured into most kernels by default. If the proc£s is not in your kernel, you will
get a message such as: mount: fs type procfs not supported by kernel. You will then have
to recompile the kernel and answer “yes” when asked for procfs support.

5.2. Installing the Binaries

If you are using one of the prepackaged Linux distributions, it will contain the major networking
applications and utilities along with a coherent set of sample files. The only case in which you might
have to obtain and install new utilities is when you install a new kernel release. As they occasionally
involve changes in the kernel networking layer, you will need to update the basic configuration tools.
This update at least involves recompiling, but sometimes you may also be required to obtain the latest set
of binaries. These binaries are available at their official home site at
[ftp.inka.de/pub/comp/Linux/networking/NetTools/, packaged in an archive called
net-tools-XXX.tar.gz, where Xxx is the version number. The release matching Linux 2.0 is
net-tools—1.45.

If you want to compile and install the standard TCP/IP network applications yourself, you can obtain the
sources from most Linux FTP servers. All modern Linux distributions include a fairly comprehensive
range of TCP/IP network applications, such as World Wide Web browsers, telnet and ftp programs, and
other network applications, such as talk. If you do find something that you do need to compile yourself,
the chances are good that it will compile under Linux from source quite simply if you follow the
instructions included in the source package.

5.3. Setting the Hostname

Most, if not all, network applications rely on you to set the local host’s name to some reasonable value.
This setting is usually made during the boot procedure by executing the hostname command. To set the
hostname to name, enter:

hostname name

It is common practice to use the unqualified hostname without specifying the domain name. For instance,
hosts at the Virtual Brewery (described in Appendix A) might be called vale.vbrew.com or

74

Chapter 5. Configuring TCP/IP Networking

vlager.vbrew.com. These are their official fully qualified domain names (FQDNs). Their local hostnames
would be the first component of the name, such as vale. However, as the local hostname is frequently
used to look up the host’s IP address, you have to make sure that the resolver library is able to look up
the host’s IP address. This usually means that you have to enter the name in /etc/hosts.

Some people suggest using the domainname command to set the kernel’s idea of a domain name to the
remaining part of the FQDN. This way you could combine the output from hostname and domainname
to get the FQDN again. However, this is at best only half correct. domainname is generally used to set
the host’s NIS domain, which may be entirely different from the DNS domain to which your host
belongs. Instead, to ensure that the short form of your hostname is resolvable with all recent versions of
the hostname command, either add it as an entry in your local Domain Name Server or place the fully
qualified domain name in the /etc/hosts file. You may then use the ——fgdn argument to the
hostname command, and it will print the fully qualifed domain name.

5.4. Assigning IP Addresses

If you configure the networking software on your host for standalone operation (for instance, to be able
to run the INN Netnews software), you can safely skip this section, because the only IP address you will
need is for the loopback interface, which is always 127.0.0.1.

Things are a little more complicated with real networks like Ethernets. If you want to connect your host
to an existing network, you have to ask its administrators to give you an IP address on this network.
When setting up a network all by yourself, you have to assign IP addresses yourself.

Hosts within a local network should usually share addresses from the same logical IP network. Hence,
you have to assign an IP network address. If you have several physical networks, you have to either
assign them different network numbers, or use subnetting to split your IP address range into several
subnetworks. Subnetting will be revisited in the next section, Section 5.5.”

When picking an IP network number, much depends on whether you intend to get on the Internet in the
near future. If so, you should obtain an official IP address now. Ask your network service provider to
help you. If you want to obtain a network number, just in case you might get on the Internet someday,
request a Network Address Application Form from hostmaster @internic.net, or your country’s own
Network Information Center, if there is one.

If your network is not connected to the Internet and won’t be in the near future, you are free to choose
any legal network address. Just make sure no packets from your internal network escape to the real
Internet. To make sure no harm can be done even if packets did escape, you should use one of the
network numbers reserved for private use. The Internet Assigned Numbers Authority (IANA) has set
aside several network numbers from classes A, B, and C that you can use without registering. These
addresses are valid only within your private network and are not routed between real Internet sites. The
numbers are defined by RFC 1597 and are listed in Table 2-1 in Chapter 2. Note that the second and third
blocks contain 16 and 256 networks, respectively.

75

Chapter 5. Configuring TCP/IP Networking

Picking your addresses from one of these network numbers is not only useful for networks completely
unconnected to the Internet; you can still implement a slightly more restricted access using a single host
as a gateway. To your local network, the gateway is accessible by its internal IP address, while the
outside world knows it by an officially registered address (assigned to you by your provider). We come
back to this concept in connection with the IP masquerade facility in Chapter 11.

Throughout the remainder of the book, we will assume that the brewery’s network manager uses a class
B network number, say 172.16.0.0. Of course, a class C network number would definitely suffice to
accommodate both the Brewery’s and the Winery’s networks. We’ll use a class B network here for the
sake of simplicity; it will make the subnetting examples in the next section of this chapter a little more
intuitive.

5.5. Creating Subnets

To operate several Ethernets (or other networks, once a driver is available), you have to split your
network into subnets. Note that subnetting is required only if you have more than one broadcast
network—point-to-point links don’t count. For instance, if you have one Ethernet, and one or more SLIP
links to the outside world, you don’t need to subnet your network. This is explained in more detail in
Chapter 7.

To accommodate the two Ethernets, the Brewery’s network manager decides to use 8 bits of the host part
as additional subnet bits. This leaves another 8 bits for the host part, allowing for 254 hosts on each of
the subnets. She then assigns subnet number 1 to the brewery, and gives the winery number 2. Their
respective network addresses are thus 172.16.1.0 and 172.16.2.0. The subnet mask is 255.255.255.0.

vlager, which is the gateway between the two networks, is assigned a host number of 1 on both of them,
which gives it the IP addresses 172.16.1.1 and 172.16.2.1, respectively.

Note that in this example we are using a class B network to keep things simple, but a class C network
would be more realistic. With the new networking code, subnetting is not limited to byte boundaries, so
even a class C network may be split into several subnets. For instance, you could use two bits of the host
part for the netmask, giving you 4 possible subnets with 64 hosts on each.'

5.6. Writing hosts and networks Files

After you have subnetted your network, you should prepare for some simple sort of hostname resolution
using the /etc/hosts file. If you are not going to use DNS or NIS for address resolution, you have to
put all hosts in the hosts file.

Even if you want to run DNS or NIS during normal operation, you should have some subset of all
hostnames in /et c/hosts. You should have some sort of name resolution, even when no network

76

Chapter 5. Configuring TCP/IP Networking

interfaces are running, for example, during boot time. This is not only a matter of convenience, but it
allows you to use symbolic hostnames in your network rc scripts. Thus, when changing IP addresses,
you only have to copy an updated host s file to all machines and reboot, rather than edit a large number
of rc files separately. Usually you put all local hostnames and addresses in hosts, adding those of any
gateways and NIS servers used.”

You should make sure your resolver only uses information from the hosts file during initial testing.
Sample files that come with your DNS or NIS software may produce strange results. To make all
applications use /etc/hosts exclusively when looking up the IP address of a host, you have to edit the
/etc/host.conf file. Comment out any lines that begin with the keyword order by preceding them
with a hash sign, and insert the line:

order hosts

The configuration of the resolver library is covered in detail in Chapter 6.

The hosts file contains one entry per line, consisting of an IP address, a hostname, and an optional list
of aliases for the hostname. The fields are separated by spaces or tabs, and the address field must begin in
the first column. Anything following a hash sign (#) is regarded as a comment and is ignored.

Hostnames can be either fully qualified or relative to the local domain. For vale, you would usually enter
the fully qualified name, vale.vbrew.com, and vale by itself in the hosts file, so that it is known by both
its official name and the shorter local name.

This is an example how a hosts file at the Virtual Brewery might look. Two special names are included,
vlager-if1 and vlager-if2, which give the addresses for both interfaces used on vlager:

#

Hosts file for Virtual Brewery/Virtual Winery

#

IP FQDN aliases

#

127.0.0.1 localhost

#

172.16.1.1 vlager.vbrew.com vlager vlager-ifl
172.16.1.2 vstout.vbrew.com vstout
172.16.1.3 vale.vbrew.com vale

#

172.16.2.1 vlager-if2

172.16.2.2 vbeaujolais.vbrew.com vbeaujolais
172.16.2.3 vbardolino.vbrew.com vbardolino
172.16.2.4 vchianti.vbrew.com vchianti

77

Chapter 5. Configuring TCP/IP Networking

Just as with a host’s IP address, you should sometimes use a symbolic name for network numbers, too.
Therefore, the hosts file has a companion called /et c/networks that maps network names to network
numbers, and vice versa. At the Virtual Brewery, we might install a networks file like this:?

/etc/networks for the Virtual Brewery
brew—net 172.16.1.0
wine-net 172.16.2.0

5.7. Interface Configuration for IP

After setting up your hardware as explained in Chapter 4, you have to make these devices known to the
kernel networking software. A couple of commands are used to configure the network interfaces and
initialize the routing table. These tasks are usually performed from the network initialization script each
time you boot the system. The basic tools for this process are called ifconfig (where “if ” stands for
interface) and route.

ifconfig is used to make an interface accessible to the kernel networking layer. This involves the
assignment of an IP address and other parameters, and activation of the interface, also known as
“bringing up” the interface. Being active here means that the kernel will send and receive IP datagrams
through the interface. The simplest way to invoke it is with:

ifconfig interface ip-address

This command assigns ip-address to interface and activates it. All other parameters are set to
default values. For instance, the default network mask is derived from the network class of the IP address,
such as 255.255.0.0 for a class B address. ifconfig is described in detail in the section Section 5.8.”

route allows you to add or remove routes from the kernel routing table. It can be invoked as:

route [add|del] [-net|-host] target [if]

The add and del arguments determine whether to add or delete the route to target. The -net and
-host arguments tell the route command whether the target is a network or a host (a host is assumed if
you don’t specify). The i f argument is again optional, and allows you to specify to which network
interface the route should be directed—the Linux kernel makes a sensible guess if you don’t supply this
information. This topic will be explained in more detail in succeeding sections.

78

Chapter 5. Configuring TCP/IP Networking

5.7.1. The Loopback Interface

The very first interface to be activated is the loopback interface:

ifconfig lo 127.0.0.1

Occasionally, you will see the dummy hostname localhost being used instead of the IP address. ifconfig
will look up the name in the host s file, where an entry should declare it as the hostname for 127.0.0.1:

Sample /etc/hosts entry for localhost
localhost 127.0.0.1

To view the configuration of an interface, you invoke ifconfig, giving it only the interface name as
argument:

S ifconfig lo

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
Collisions:0

As you can see, the loopback interface has been assigned a netmask of 255.0.0.0, since 127.0.0.1 is a
class A address.

Now you can almost start playing with your mini-network. What is still missing is an entry in the routing
table that tells IP that it may use this interface as a route to destination 127.0.0.1. This is accomplished
by using:

route add 127.0.0.1

Again, you can use localhost instead of the IP address, provided you’ve entered it into your /etc/hosts.

Next, you should check that everything works fine, for example by using ping. ping is the networking
equivalent of a sonar device.* The command is used to verify that a given address is actually reachable,
and to measure the delay that occurs when sending a datagram to it and back again. The time required for
this process is often referred to as the “round-trip time”:

79

Chapter 5. Configuring TCP/IP Networking

ping localhost

PING localhost (127.
64 bytes from 127.0.
64 bytes from 127.0.
64 bytes from 127.0.
~C

—-—— localhost ping statistics —---

3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.4 ms

#

.0.1): 56 data bytes

.1: icmp_seqg=0 ttl=255 time=0.4 ms
.1: icmp_seg=1 ttl=255 time=0.4 ms
.1: icmp_seg=2 ttl=255 time=0.4 ms

o O O O

When you invoke ping as shown here, it will continue emitting packets forever, unless interrupted by the
user. The ~C marks the place where we pressed Ctrl-C.

The previous example shows that packets for 127.0.0.1 are properly delivered and a reply is returned to
ping almost instantaneously. This shows that you have successfully set up your first network interface.

If the output you get from ping does not resemble that shown in the previous example, you are in trouble.
Check any errors if they indicate that some file hasn’t been installed properly. Check that the ifconfig and
route binaries you use are compatible with the kernel release you run, and above all, that the kernel has
been compiled with networking enabled (you see this from the presence of the /proc/net directory). If
you get an error message saying “Network unreachable,” you probably got the route command wrong.
Make sure you use the same address you gave to ifconfig.

The steps previously described are enough to use networking applications on a standalone host. After
adding the lines mentioned earlier to your network initialization script and making sure it will be
executed at boot time, you may reboot your machine and try out various applications. For instance,
telnet localhost should establish a telnet connection to your host, giving you a 1ogin: prompt.

However, the loopback interface is useful not only as an example in networking books, or as a test bed
during development, but is actually used by some applications during normal operation.’ Therefore, you
always have to configure it, regardless of whether your machine is attached to a network or not.

5.7.2. Ethernet Interfaces

Configuring an Ethernet interface is pretty much the same as the loopback interface; it just requires a few
more parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the IP network, which was originally a class B network, into
class C subnetworks. To make the interface recognize this, the ifconfig incantation would look like this:

ifconfig eth0 vstout netmask 255.255.255.0

80

Chapter 5. Configuring TCP/IP Networking

This command assigns the eth0 interface the IP address of vstout (172.16.1.2). If we omitted the
netmask, ifconfig would deduce the netmask from the IP network class, which would result in an
incorrect netmask of 255.255.0.0. Now a quick check shows:

ifconfig ethO
ethO Link encap 10Mps Ethernet HWaddr 00:00:C0:90:B3:42
inet addr 172.16.1.2 Bcast 172.16.1.255 Mask 255.255.255.0
UP BROADCAST RUNNING MTU 1500 Metric 1
RX packets 0 errors 0 dropped 0 overrun 0
TX packets 0 errors 0 dropped 0 overrun 0

You can see that ifconfig automatically sets the broadcast address (the Bcast field) to the usual value,
which is the host’s network number with all the host bits set. Also, the maximum transmission unit (the
maximum size of IP datagrams the kernel will generate for this interface) has been set to the maximum
size of Ethernet packets: 1,500 bytes. The defaults are usually what you will use, but all these values can
be overidden if required, with special options that will be described under Section 5.8”.

Just as for the loopback interface, you now have to install a routing entry that informs the kernel about
the network that can be reached through eth0. For the Virtual Brewery, you might invoke route as:

route add -net 172.16.1.0

At first this looks a little like magic, because it’s not really clear how route detects which interface to
route through. However, the trick is rather simple: the kernel checks all interfaces that have been
configured so far and compares the destination address (172.16.1.0 in this case) to the network part of the
interface address (that is, the bitwise AND of the interface address and the netmask). The only interface
that matches is etho0.

Now, what’s that -net option for? This is used because route can handle both routes to networks and
routes to single hosts (as you saw before with localhost). When given an address in dotted quad notation,
route attempts to guess whether it is a network or a hostname by looking at the host part bits. If the
address’s host part is zero, route assumes it denotes a network; otherwise, route takes it as a host
address. Therefore, route would think that 172.16.1.0 is a host address rather than a network number,
because it cannot know that we use subnetting. We have to tell route explicitly that it denotes a network,
so we give it the —net flag.

Of course, the route command is a little tedious to type, and it’s prone to spelling mistakes. A more
convenient approach is to use the network names we defined in /etc/networks. This approach makes
the command much more readable; even the —net flag can be omitted because route knows that
172.16.1.0 denotes a network:

81

Chapter 5. Configuring TCP/IP Networking

route add brew-net

Now that you’ve finished the basic configuration steps, we want to make sure that your Ethernet interface
is indeed running happily. Choose a host from your Ethernet, for instance vlager, and type:

ping vlager

PING vlager: 64 byte packets

64 bytes from 172.16.1.1: icmp_seg=0. time=11l. ms
64 bytes from 172.16.1.1: icmp_seg=1l. time=7. ms
64 bytes from 172.16.1.1: icmp_seg=2. time=12. ms
64 bytes from 172.16.1.1: icmp_seg=3. time=3. ms
~C

—-——-vstout.vbrew.com PING Statistics———-

4 packets transmitted, 4 packets received, 0
round-trip (ms) min/avg/max = 3/8/12

If you don’t see similar output, something is broken. If you encounter unusual packet loss rates, this hints
at a hardware problem, like bad or missing terminators. If you don’t receive any replies at all, you should
check the interface configuration with netstat described later in Section 5.9”. The packet statistics
displayed by ifconfig should tell you whether any packets have been sent out on the interface at all. If
you have access to the remote host too, you should go over to that machine and check the interface
statistics. This way you can determine exactly where the packets got dropped. In addition, you should
display the routing information with route to see if both hosts have the correct routing entry. route prints
out the complete kernel routing table when invoked without any arguments (-n just makes it print
addresses as dotted quad instead of using the hostname):

route -n
Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.1 * 255.255.255.255 UH 1 0 112 1lo
172.16.1.0 * 255.255.255.0 U 1 0 10 ethO

The detailed meaning of these fields is explained later in Section 5.9." The Flags column contains a list
of flags set for each interface. U is always set for active interfaces, and H says the destination address
denotes a host. If the H flag is set for a route that you meant to be a network route, you have to reissue
the route command with the —net option. To check whether a route you have entered is used at all,
check to see if the Use field in the second to last column increases between two invocations of ping.

82

Chapter 5. Configuring TCP/IP Networking

5.7.3. Routing Through a Gateway

In the previous section, we covered only the case of setting up a host on a single Ethernet. Quite
frequently, however, one encounters networks connected to one another by gateways. These gateways
may simply link two or more Ethernets, but may also provide a link to the outside world, such as the
Internet. In order to use a gateway, you have to provide additional routing information to the networking
layer.

The Ethernets of the Virtual Brewery and the Virtual Winery are linked through such a gateway, namely
the host vlager. Assuming that vlager has already been configured, we just have to add another entry to
vstout’s routing table that tells the kernel it can reach all hosts on the Winery’s network through vlager.
The appropriate incantation of route is shown below; the gw keyword tells it that the next argument
denotes a gateway:

route add wine-net gw vlager

Of course, any host on the Winery network you wish to talk to must have a routing entry for the
Brewery’s network. Otherwise you would only be able to send data to the Winery network from the
Brewery network, but the hosts on the Winery would be unable to reply.

This example describes only a gateway that switches packets between two isolated Ethernets. Now
assume that vlager also has a connection to the Internet (say, through an additional SLIP link). Then we
would want datagrams to any destination network other than the Brewery to be handed to vlager. This
action can be accomplished by making it the default gateway for vstout:

route add default gw vlager

The network name default is a shorthand for 0.0.0.0, which denotes the default route. The default route
matches every destination and will be used if there is no more specific route that matches. You do not
have to add this name to /etc/networks because it is built into route.

If you see high packet loss rates when pinging a host behind one or more gateways, this may hint at a
very congested network. Packet loss is not so much due to technical deficiencies as to temporary excess
loads on forwarding hosts, which makes them delay or even drop incoming datagrams.

5.7.4. Configuring a Gateway

Configuring a machine to switch packets between two Ethernets is pretty straightforward. Assume we’re

83

Chapter 5. Configuring TCP/IP Networking

back at vlager, which is equipped with two Ethernet cards, each connected to one of the two networks.
All you have to do is configure both interfaces separately, giving them their respective IP addresses and
matching routes, and that’s it.

It is quite useful to add information on the two interfaces to the hosts file as shown in the following
example, so we have handy names for them, too:

172.16.1.1 vlager.vbrew.com vlager vlager-ifl
172.16.2.1 vlager-if2

The sequence of commands to set up the two interfaces is then:

ifconfig eth0 vlager-ifl
route add brew-net

ifconfig ethl vlager-if2

H o W

route add wine-net

If this sequence doesn’t work, make sure your kernel has been compiled with support for IP forwarding
enabled. One good way to do this is to ensure that the first number on the second line of
/proc/net/snmp is setto 1.

5.7.5. The PLIP Interface

A PLIP link used to connect two machines is a little different from an Ethernet. PLIP links are an
example of what are called point-to-point links, meaning that there is a single host at each end of the
link. Networks like Ethernet are called broadcast networks. Configuration of point-to-point links is
different because unlike broadcast networks, point-to-point links don’t support a network of their own.

PLIP provides very cheap and portable links between computers. As an example, we’ll consider the
laptop computer of an employee at the Virtual Brewery that is connected to vlager via PLIP. The laptop
itself is called vlite and has only one parallel port. At boot time, this port will be registered as p1ip1l. To
activate the link, you have to configure the plip1 interface using the following commands:®

ifconfig plipl vlite pointopoint vlager
route add default gw vlager

The first command configures the interface, telling the kernel that this is a point-to-point link, with the
remote side having the address of vlager. The second installs the default route, using vlager as gateway.
On vlager, a similar ifconfig command is necessary to activate the link (a route invocation is not needed):

84

Chapter 5. Configuring TCP/IP Networking

ifconfig plipl vlager pointopoint vlite

Note that the plip1 interface on vlager does not need a separate IP address, but may also be given the
address 172.16.1.1. Point-to-point networks don’t support a network directly, so the interfaces don’t
require an address on any supported network. The kernel uses the interface information in the routing
table to avoid any possible confusion.’

Now we have configured routing from the laptop to the Brewery’s network; what’s still missing is a way
to route from any of the Brewery’s hosts to vlite. One particularly cumbersome way is to add a specific
route to every host’s routing table that names vlager as a gateway to vlite:

route add vlite gw vlager

Dynamic routing offers a much better option for temporary routes. You could use gated, a routing
daemon, which you would have to install on each host in the network in order to distribute routing
information dynamically. The easiest option, however, is to use proxy ARP (Address Resolution
Protocol). With proxy ARP, vlager will respond to any ARP query for vlite by sending its own Ethernet
address. All packets for vlite will wind up at vlager, which then forwards them to the laptop. We will
come back to proxy ARP in the section Section 5.10.”

Current net-tools releases contain a tool called plipconfig, which allows you to set certain PLIP
timing parameters. The IRQ to be used for the printer port can be set using the ifconfig command.

5.7.6. The SLIP and PPP Interfaces

Although SLIP and PPP links are only simple point-to-point links like PLIP connections, there is much
more to be said about them. Usually, establishing a SLIP connection involves dialing up a remote site
through your modem and setting the serial line to SLIP mode. PPP is used in a similar fashion. We
discuss SLIP and PPP in detail in Chapter 7 and Chapter 8.

5.7.7. The Dummy Interface

The dummy interface is a little exotic, but rather useful nevertheless. Its main benefit is with standalone
hosts and machines whose only IP network connection is a dialup link. In fact, the latter are standalone
hosts most of the time, too.

The dilemma with standalone hosts is that they only have a single network device active, the loopback
device, which is usually assigned the address 127.0.0.1. On some occasions, however, you must send

85

Chapter 5. Configuring TCP/IP Networking

data to the “official” IP address of the local host. For instance, consider the laptop vlite, which was
disconnected from a network for the duration of this example. An application on vlite may now want to
send data to another application on the same host. Looking up vlite in /etc/hosts yields an IP address
of 172.16.1.65, so the application tries to send to this address. As the loopback interface is currently the
only active interface on the machine, the kernel has no idea that 172.16.1.65 actually refers to itself !
Consequently, the kernel discards the datagram and returns an error to the application.

This is where the dummy device steps in. It solves the dilemma by simply serving as the alter ego of the
loopback interface. In the case of vlite, you simply give it the address 172.16.1.65 and add a host route
pointing to it. Every datagram for 172.16.1.65 is then delivered locally. The proper invocation is:*®

ifconfig dummy vlite
route add vlite

5.7.8. IP Alias

New kernels support a feature that can completely replace the dummy interface and serve other useful
functions. IP Alias allows you to configure multiple IP addresses onto a physical device. In the simplest
case, you could replicate the function of the dummy interface by configuring the host address as an alias
onto the loopback interface and completely avoid using the dummy interface. In more complex uses, you
could configure your host to look like many different hosts, each with its own IP address. This
configuration is sometimes called “Virtual Hosting,” although technically it is also used for a variety of
other techniques.’

To configure an alias for an interface, you must first ensure that your kernel has been compiled with
support for IP Alias (check that you have a /proc/net/ip_alias file; if not, you will have to
recompile your kernel). Configuration of an IP alias is virtually identical to configuring a real network
device; you use a special name to indicate it’s an alias that you want. For example:

ifconfig lo:0 172.16.1.1

This command would produce an alias for the loopback interface with the address 172.16.1.1.IP
aliases are referred to by appending :n to the actual network device, in which “n” is an integer. In our
example, the network device we are creating the alias on is 1o, and we are creating an alias numbered

zero for it. This way, a single physical device may support a number of aliases.

Each alias may be treated as though it is a separate device, and as far as the kernel IP software is
concerned, it will be; however, it will be sharing its hardware with another interface.

86

Chapter 5. Configuring TCP/IP Networking

5.8. All About ifconfig

There are many more parameters to ifconfig than we have described so far. Its normal invocation is this:

ifconfig interface [address [parameters]]

interface is the interface name, and address is the IP address to be assigned to the interface. This
may be either an IP address in dotted quad notation or a name that ifconfig will look up in /etc/hosts.

If ifconfig is invoked with only the interface name, it displays that interface’s configuration. When
invoked without any parameters, it displays all interfaces you have configured so far; a —a option forces it
to show the inactive ones as well. A sample invocation for the Ethernet interface et h0 may look like this:

ifconfig ethO
ethO Link encap 10Mbps Ethernet HWaddr 00:00:C0:90:B3:42
inet addr 172.16.1.2 Bcast 172.16.1.255 Mask 255.255.255.0
UP BROADCAST RUNNING MTU 1500 Metric O
RX packets 3136 errors 217 dropped 7 overrun 26
TX packets 1752 errors 25 dropped 0 overrun 0

The MTU and Met ric fields show the current MTU and metric value for that interface. The metric value
is traditionally used by some operating systems to compute the cost of a route. Linux doesn’t use this
value yet, but defines it for compatibility, nevertheless.

The rX and TX lines show how many packets have been received or transmitted error free, how many
errors occurred, how many packets were dropped (probably because of low memory), and how many
were lost because of an overrun. Receiver overruns usually occur when packets come in faster than the
kernel can service the last interrupt. The flag values printed by ifconfig roughly correspond to the names
of its command-line options; they will be explained later.

The following is a list of parameters recognized by ifconfig with the corresponding flag names. Options
that simply turn on a feature also allow it to be turned off again by preceding the option name by a dash

-
up
This option makes an interface accessible to the IP layer. This option is implied when an address

is given on the command line. It may also be used to reenable an interface that has been taken down
temporarily using the down option.

This option corresponds to the flags UP and RUNNING.

87

Chapter 5. Configuring TCP/IP Networking

down

This option marks an interface inaccessible to the IP layer. This effectively disables any IP traffic
through the interface. Note that this option will also automatically delete all routing entries that use
this interface.

netmask mask

This option assigns a subnet mask to be used by the interface. It may be given as either a 32-bit
hexadecimal number preceded by Ox, or as a dotted quad of decimal numbers. While the dotted quad
format is more common, the hexadecimal representation is often easier to work with. Netmasks are
essentially binary, and it is easier to do binary-to-hexadecimal than binary-to-decimal conversion.

pointopoint address

This option is used for point-to-point IP links that involve only two hosts. This option is needed to
configure SLIP or PLIP interfaces, for example. If a point-to-point address has been set, ifconfig
displays the POINTOPOINT flag.

broadcast address

The broadcast address is usually made up from the network number by setting all bits of the host
part. Some IP implementations (systems derived from BSD 4.2, for instance) use a different scheme
in which all host part bits are cleared instead. The broadcast option adapts to these strange
environments. If a broadcast address has been set, ifconfig displays the BROADCAST flag.

irg
This option allows you to set the IRQ line used by certain devices. This is especially useful for
PLIP, but may also be useful for certain Ethernet cards.
metric number

This option may be used to assign a metric value to the routing table entry created for the
interface. This metric is used by the Routing Information Protocol (RIP) to build routing tables for
the network.'® The default metric used by ifconfig is zero. If you don’t run a RIP daemon, you don’t
need this option at all; if you do, you will rarely need to change the metric value.

mtu bytes

This sets the Maximum Transmission Unit, which is the maximum number of octets the interface is
able to handle in one transaction. For Ethernets, the MTU defaults to 1,500 (the largest allowable
size of an Ethernet packet); for SLIP interfaces, it is 296. (There is no constraint on the MTU of
SLIP links; this value is a good compromise.)

arp

This is an option specific to broadcast networks such as Ethernets or packet radio. It enables the use
of the Address Resolution Protocol (ARP) to detect the physical addresses of hosts attached to the
network. For broadcast networks, it is on by default. If ARP is disabled, ifconfig displays the NOARP
flag.

-arp

This option disables the use of ARP on this interface.

88

Chapter 5. Configuring TCP/IP Networking

promisc

This option puts the interface in promiscuous mode. On a broadcast network, this makes the
interface receive all packets, regardless of whether they were destined for this host or not. This
allows network traffic analysis using packet filters and such, also called Ethernet snooping. Usually,
this is a good technique for hunting down network problems that are otherwise hard to detect. Tools
such as tcpdump rely on this.

On the other hand, this option allows attackers to do nasty things, such as skim the traffic of your
network for passwords. You can protect against this type of attack by prohibiting just anyone from
plugging their computers into your Ethernet. You could also use secure authentication protocols,
such as Kerberos or the secure shell login suite.'’ This option corresponds to the PROMISC flag.

—-promisc

This option turns promiscuous mode off.

allmulti

Multicast addresses are like Ethernet broadcast addresses, except that instead of automatically
including everybody, the only people who receive packets sent to a multicast address are those
programmed to listen to it. This is useful for applications like Ethernet-based videoconferencing or
network audio, to which only those interested can listen. Multicast addressing is supported by most,
but not all, Ethernet drivers. When this option is enabled, the interface receives and passes multicast
packets for processing. This option corresponds to the ALLMULTI flag.

—allmulti

This option turns multicast addresses off.

5.9. The netstat Command

netstat is a useful tool for checking your network configuration and activity. It is in fact a collection of
several tools lumped together. We discuss each of its functions in the following sections.

5.9.1. Displaying the Routing Table

When you invoke netstat with the —r flag, it displays the kernel routing table in the way we’ve been
doing with route. On vstout, it produces:

netstat -nr
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.1 * 255.255.255.255 UH 00 0 lo
172.16.1.0 * 255.255.255.0 U 00 0 ethO
172.16.2.0 172.16.1.1 255.255.255.0 UG 00 0 ethO

89

Chapter 5. Configuring TCP/IP Networking

The —n option makes netstat print addresses as dotted quad IP numbers rather than the symbolic host
and network names. This option is especially useful when you want to avoid address lookups over the
network (e.g., to a DNS or NIS server).

The second column of netstat ’s output shows the gateway to which the routing entry points. If no
gateway is used, an asterisk is printed instead. The third column shows the “generality” of the route, i.e.,
the network mask for this route. When given an IP address to find a suitable route for, the kernel steps
through each of the routing table entries, taking the bitwise AND of the address and the genmask before
comparing it to the target of the route.

The fourth column displays the following flags that describe the route:

G
The route uses a gateway.

U
The interface to be used is up.

H
Only a single host can be reached through the route. For example, this is the case for the loopback
entry 127.0.0.1.

D
This route is dynamically created. It is set if the table entry has been generated by a routing daemon
like gated or by an ICMP redirect message (see the section Section 2.5” in Chapter 2).

M

This route is set if the table entry was modified by an ICMP redirect message.

The route is a reject route and datagrams will be dropped.

The next three columns show the MSS, Window and irtt that will be applied to TCP connections
established via this route. The MSS is the Maximum Segment Size and is the size of the largest datagram
the kernel will construct for transmission via this route. The Window is the maximum amount of data the
system will accept in a single burst from a remote host. The acronym irtt stands for “initial round trip
time.” The TCP protocol ensures that data is reliably delivered between hosts by retransmitting a
datagram if it has been lost. The TCP protocol keeps a running count of how long it takes for a datagram
to be delivered to the remote end, and an acknowledgement to be received so that it knows how long to
wait before assuming a datagram needs to retransmitted; this process is called the round-trip time. The
initial round-trip time is the value that the TCP protocol will use when a connection is first established.

90

Chapter 5. Configuring TCP/IP Networking

For most network types, the default value is okay, but for some slow networks, notably certain types of
amateur packet radio networks, the time is too short and causes unnecessary retransmission. The irtt
value can be set using the route command. Values of zero in these fields mean that the default is being
used.

Finally, the last field displays the network interface that this route will use.

5.9.2. Displaying Interface Statistics

When invoked with the -1 flag, netstat displays statistics for the network interfaces currently
configured. If the —a option is also given, it prints all interfaces present in the kernel, not only those that
have been configured currently. On vstout, the output from netstat will look like this:

netstat -i

Kernel Interface table

Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flags
lo 0 0 3185 0 0 0 3185 0 0 0 BLRU
eth0 1500 0 972633 17 20 120 628711 217 0 0 BRU

The MTU and Met fields show the current MTU and metric values for that interface. The Rx and TX
columns show how many packets have been received or transmitted error-free (RX-0K/TX-OK) or
damaged (RX-ERR/TX-ERR); how many were dropped (RX-DRP/TX-DRP); and how many were lost
because of an overrun (RX-OVR/TX-OVR).

The last column shows the flags that have been set for this interface. These characters are one-character
versions of the long flag names that are printed when you display the interface configuration with
ifconfig:

B
A broadcast address has been set.
L
This interface is a loopback device.
M
All packets are received (promiscuous mode).
o]
ARP is turned off for this interface.
P

This is a point-to-point connection.

91

Interface is up.

Interface is running.

Chapter 5. Configuring TCP/IP Networking

5.9.3. Displaying Connections

netstat supports a set of options to display active or passive sockets. The options —t, —u, —w, and -x

show active TCP, UDP, RAW, or Unix socket connections. If you provide the -a flag in addition, sockets
that are waiting for a connection (i.e., listening) are displayed as well. This display will give you a list of
all servers that are currently running on your system.

Invoking netstat -ta on vlager produces this output:

S netstat

-ta

Active Internet Connections

Proto Recv—-Q Send-Q

tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp

0

O O O O O O O O o o o

0

O O O O O O O o o o o

Local Address
*:domain
*:time

*:smtp
vlager:smtp
*:telnet
localhost:1046
*:chargen
*x:daytime
*x:discard
*:echo
*:shell
*:1login

Foreign Address

* T x

* 1%

* :x

vstout:1040

* 1%
vbardolino:telnet
* 1%

* T x

* 1%

* 1k

(State)
LISTEN
LISTEN
LISTEN
ESTABLISHED
LISTEN
ESTABLISHED
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN

This output shows most servers simply waiting for an incoming connection. However, the fourth line
shows an incoming SMTP connection from vstout, and the sixth line tells you there is an outgoing telnet

connection to vbardolino."

Using the -a flag by itself will display all sockets from all families.

92

Chapter 5. Configuring TCP/IP Networking

5.10. Checking the ARP Tables

On some occasions, it is useful to view or alter the contents of the kernel’s ARP tables, for example when
you suspect a duplicate Internet address is the cause for some intermittent network problem. The arp
tool was made for situations like this. Its command-line options are:

arp [-v] [-t hwtype]l —a [hostname]
arp [-v] [-t hwtypel —-s hostname hwaddr
arp [-v] —-d hostname [hostname...]

All hostname arguments may be either symbolic hostnames or IP addresses in dotted quad notation.

The first invocation displays the ARP entry for the IP address or host specified, or all hosts known if no
hostname is given. For example, invoking arp on vlager may yield:

arp -a

IP address HW type HW address
172.16.1.3 10Mbps Ethernet 00:00:C0:5A:42:C1
172.16.1.2 10Mbps Ethernet 00:00:C0:90:B3:42
172.16.2.4 10Mbps Ethernet 00:00:C0:04:69:AA

which shows the Ethernet addresses of vlager, vstout and vale.

You can limit the display to the hardware type specified using the —t option. This may be ether, ax25, or
pronet, standing for 10 Mbps Ethernet; AMPR AX.25, and IEEE 802.5 token ring equipment,
respectively.

The —s option is used to permanently add hostname’s Ethernet address to the ARP tables. The hwaddr
argument specifies the hardware address, which is by default expected to be an Ethernet address
specified as six hexadecimal bytes separated by colons. You may also set the hardware address for other
types of hardware, using the —t option.

For some reason, ARP queries for the remote host sometimes fail, for instance when its ARP driver is
buggy or there is another host in the network that erroneously identifies itself with that host’s IP address;
this problem requires you to manually add an IP address to the ARP table. Hard-wiring IP addresses in
the ARP table is also a (very drastic) measure to protect yourself from hosts on your Ethernet that pose
as someone else.

Invoking arp using the —d switch deletes all ARP entries relating to the given host. This switch may be
used to force the interface to re-attempt obtaining the Ethernet address for the IP address in question.

93

Notes

Chapter 5. Configuring TCP/IP Networking

This is useful when a misconfigured system has broadcasted wrong ARP information (of course, you
have to reconfigure the broken host first).

The —s option may also be used to implement proxy ARP. This is a special technique through which a
host, say gate, acts as a gateway to another host named fnord by pretending that both addresses refer to
the same host, namely gate. It does so by publishing an ARP entry for fnord that points to its own
Ethernet interface. Now when a host sends out an ARP query for fnord, gate will return a reply
containing its own Ethernet address. The querying host will then send all datagrams to gate, which
dutifully forwards them to fnord.

These contortions may be necessary when you want to access fnord from a DOS machine with a broken
TCP implementation that doesn’t understand routing too well. When you use proxy ARP, it will appear
to the DOS machine as if fnord was on the local subnet, so it doesn’t have to know about how to route
through a gateway.

Another useful application of proxy ARP is when one of your hosts acts as a gateway to some other host
only temporarily, for instance, through a dial-up link. In a previous example, we encountered the laptop
vlite, which was connected to vlager through a PLIP link from time to time. Of course, this application
will work only if the address of the host you want to provide proxy ARP for is on the same IP subnet as
your gateway. vstout could proxy ARP for any host on the Brewery subnet (172.16.1.0), but never for a
host on the Winery subnet (172.16.2.0).

The proper invocation to provide proxy ARP for fnord is given below; of course, the given Ethernet
address must be that of gate:

arp —-s fnord 00:00:c0:al1:42:e0 pub

The proxy ARP entry may be removed again by invoking:

arp -d fnord

1. The first number on each subnet is the subnetwork address, and the last number on each subnet is
reserved as the broadcast address, so it’s actually 62 hosts per subnet.

2. You need the address of an NIS server only if you use Peter Eriksson’s NYS. Other NIS
implementations locate their servers only at runtime by using ypbind.

3. Note that names in networks must not collide with hostnames from the host s file, or else some
programs may produce strange results.

94

10.

11.
12.

Chapter 5. Configuring TCP/IP Networking

Anyone remember Pink Floyd’s “Echoes”?

For example, all applications based on RPC use the loopback interface to register themselves with
the portmapper daemon at startup. These applications include NIS and NFS.

Note that pointopoint is not a typo. It’s really spelled like this.

As a matter of caution, you should configure a PLIP or SLIP link only after you have completely set
up the routing table entries for your Ethernets. With some older kernels, your network route might
otherwise end up pointing at the point-to-point link.

The dummy device is called dummy0 if you have loaded it as a module rather than choosing it as an
inbuilt kernel option. This is because you are able to load multiple modules and have more than one
dummy device.

More correctly, using IP aliasing is known as network layer virtual hosting. It is more common in the
WWW and STMP worlds to use application layer virtual hosting, in which the same IP address is
used for each virtual host, but a different hostname is passed with each application layer request.
Services like FTP are not capable of operating in this way, and they demand network layer virtual
hosting.

RIP chooses the optimal route to a given host based on the “length” of the path. It is computed by
summing up the individual metric values of each host-to-host link. By default, a hop has length 1, but
this may be any positive integer less than 16. (A route length of 16 is equal to infinity. Such routes
are considered unusable.) The met ric parameter sets this hop cost, which is then broadcast by the
routing daemon.

ssh can be obtained from ftp.cs.hut.fi in /pub/ssh.

You can tell whether a connection is outgoing from the port numbers. The port number shown for the
calling host will always be a simple integer. On the host being called, a well-known service port will
be in use for which netstat uses the symbolic name such as smtp, found in /etc/services.

95

Chapter 6. Name Service and Resolver
Configuration

As we discussed in Chapter 2, TCP/IP networking may rely on different schemes to convert names into
addresses. The simplest way is a host table stored in /etc/hosts. This is useful only for small LANs
that are run by one single administrator and otherwise have no IP traffic with the outside world. The
format of the hosts file has already been described in Chapter 5.

Alternatively, you can use the Berkeley Internet Name Domain service (BIND) for resolving hostnames
to IP addresses. Configuring BIND can be a real chore, but once you’ve done it, you can easily make
changes in the network topology. On Linux, as on many other Unixish systems, name service is provided
through a program called named. At startup, it loads a set of master files into its internal cache and waits
for queries from remote or local user processes. There are different ways to set up BIND, and not all
require you to run a name server on every host.

This chapter can do little more than give a rough sketch of how DNS works and how to operate a name
server. It should be sufficient if you have a small LAN and an Internet uplink. For the most current
information, you may want to check the documentation contained in the BIND source package, which
supplies manual pages, release notes, and the BIND Operator’s Guide (BOG). Don’t let this name scare
you off; it’s actually a very useful document. For a more comprehensive coverage of DNS and associated
issues, you may find DNS and BIND by Paul Albitz and Cricket Liu (O’Reilly) a useful reference. DNS
questions may be answered in a newsgroup called comp.protocols.tcp-ip.domains. For technical details,
the Domain Name System is defined by RFC numbers 1033, 1034, and 1035.

6.1. The Resolver Library

The term resolver refers not to a special application, but to the resolver library. This is a collection of
functions that can be found in the standard C library. The central routines are gethostbyname (2) and
gethostbyaddr (2), which look up all IP addresses associated with a host name, and vice versa. They
may be configured to simply look up the information in hosts, to query a number of DNS name servers,
or to use the hosts database of Network Information Service (NIS).

The resolver functions read configuration files when they are invoked. From these configuration files,
they determine what databases to query, in which order, and other details relevant to how you’ve
configured your environment. The older Linux standard library, libc, used /etc/host . conf as its
master configuration file, but Version 2 of the GNU standard library, glibc, uses /etc/nsswitch.conft.
We’ll describe each in turn, since both are commonly used.

96

Chapter 6. Name Service and Resolver Configuration

6.1.1. The host.conf File

The /etc/host.conf tells the older Linux standard library resolver functions which services to use,
and in what order.

Options in host . conf must appear on separate lines. Fields may be separated by white space (spaces or
tabs). A hash sign (#) introduces a comment that extends to the next newline. The following options are
available:

order

This option determines the order in which the resolving services are tried. Valid options are bind
for querying the name server, hosts for lookups in /etc/hosts, and nis for NIS lookups. Any or
all of them may be specified. The order in which they appear on the line determines the order in
which the respective services are tried.

multi

multi takes on or off as options. This determines if a host in /etc/hosts is allowed to have
several IP addresses, which is usually referred to as being “multi-homed.” The default is off. This
flag has no effect on DNS or NIS queries.

nospoof

As we’ll explain in the section Section 6.2.4,” DNS allows you to find the hostname belonging to
an IP address by using the in-addr.arpa domain. Attempts by name servers to supply a false
hostname are called spoofing. To guard against this, the resolver can be configured to check whether
the original IP address is in fact associated with the obtained hostname. If not, the name is rejected
and an error is returned. This behavior is turned on by setting nospoof on.

alert
This option takes on or off as arguments. If it is turned on, any spoof attempts will cause the
resolver to log a message to the syslog facility.

trim

This option takes an argument specifying a domain name that will be removed from hostnames
before lookup. This is useful for host s entries, for which you might only want to specify
hostnames without a local domain. If you specify your local domain name here, it will be removed
from a lookup of a host with the local domain name appended, thus allowing the lookup in
/etc/hosts to succeed. The domain name you add must end with the (.) character (e.g.,
:linux.org.au.)if trimis to work correctly.

trim options accumulate; you can consider your host as being local to several domains.

A sample file for vlager is shown in Example 6-1.

97

Chapter 6. Name Service and Resolver Configuration

Example 6-1. Sample host.conf File

/etc/host.conf

We have named running, but no NIS (yet)
order bind, hosts

Allow multiple addrs

multi on

Guard against spoof attempts

nospoof on

Trim local domain (not really necessary) .
trim vbrew.com.

6.1.1.1. Resolver environment variables

The settings from host . conf may be overridden using a number of environment variables:

RESOLV_HOST_CONF

This variable specifies a file to be read instead of /etc/host .conf.

RESOLV_SERV_ORDER

This variable overrides the order option given in host . conf. Services are given as hosts, bind, and
nis, separated by a space, comma, colon, or semicolon.

RESOLV_SPOOF_CHECK

This variable determines the measures taken against spoofing. It is completely disabled by off. The
values warn and warn off enable spoof checking by turning logging on and off, respectively. A value
of * turns on spoof checks, but leaves the logging facility as defined in host . conf.

RESOLV_MULTI

This variable uses a value of on or off to override the multi options from host . conf.

RESOLV_OVERRIDE_TRIM_DOMAINS

This variable specifies a list of trim domains that override those given in host . conf. Trim
domains were explained earlier when we discussed the trim keyword.

RESOLV_ADD_TRIM_DOMAINS

This variable specifies a list of trim domains that are added to those given in host . con .

6.1.2. The nsswitch.conf File

Version 2 of the GNU standard library includes a more powerful and flexible replacement for the older
host .conf mechanism. The concept of the name service has been extended to include a variety of

98

Chapter 6. Name Service and Resolver Configuration

different types of information. Configuration options for all of the different functions that query these
databases have been brought back into a single configuration file; the nsswitch.conf file.

The nsswitch.conf file allows the system administrator to configure a wide variety of different
databases. We’ll limit our discussion to options that relate to host and network IP address resolution. You
can easily find more information about the other features by reading the GNU standard library
documentation.

Options in nsswitch.conf must appear on separate lines. Fields may be separated by whitespace
(spaces or tabs). A hash sign (#) introduces a comment that extends to the next newline. Each line
describes a particular service; hostname resolution is one of these. The first field in each line is the name
of the database, ending with a colon. The database name associated with host address resolution is hosts.
A related database is networks, which is used for resolution of network names into network addresses.
The remainder of each line stores options that determine the way lookups for that database are performed.

The following options are available:

dns

Use the Domain Name System (DNS) service to resolve the address. This makes sense only for
host address resolution, not network address resolution. This mechanism uses the
/etc/resolv.conf file that we’ll describe later in the chapter.

files
Search a local file for the host or network name and its corresponding address. This option uses the
traditional /etc/hosts and /etc/network files.

nis or nisplus

Use the Network Information System (NIS) to resolve the host or network address. NIS and NIS+
are discussed in detail in Chapter 13.

The order in which the services to be queried are listed determines the order in which they are queried
when attempting to resolve a name. The query-order list is in the service description in the
/etc/nsswitch.conf file. The services are queried from left to right and by default searching stops
when a resolution is successful.

A simple example of host and network database specification that would mimic our configuration using
the older libc standard library is shown in Example 6-2.

Example 6-2. Sample nsswitch.conf File

/etc/nsswitch.conf

#

Example configuration of GNU Name Service Switch functionality.

Information about this file is available in the ‘libc6-doc’ package.

99

Chapter 6. Name Service and Resolver Configuration

hosts: dns files
networks: files

This example causes the system to look up hosts first in the Domain Name System, and the /etc/hosts
file, if that can’t find them. Network name lookups would be attempted using only the /etc/networks
file.

You are able to control the lookup behavior more precisely using “action items” that describe what action
to take given the result of the previous lookup attempt. Action items appear between service
specifications, and are enclosed within square brackets, []. The general syntax of the action statement is:

[[!] status = action ...]

There are two possible actions:

return
Controls returns to the program that attempted the name resolution. If a lookup attempt was
successful, the resolver will return with the details, otherwise it will return a zero result.
continue
The resolver will move on to the next service in the list and attempt resolution using it.

The optional (!) character specifies that the status value should be inverted before testing; that is, it
means “not.”

The available status values on which we can act are:

SuUCCess

The requested entry was found without error. The default action for this status is return.

notfound
There was no error in the lookup, but the target host or network could not be found. The default
action for this status is continue.

unavail
The service queried was unavailable. This could mean that the hosts or networks file was
unreadable for the files service or that a name server or NIS server did not respond for the dns or nis
services. The default action for this status is continue.

tryagain

This status means the service is temporarily unavailable. For the files files service, this would
usually indicate that the relevant file was locked by some process. For other services, it may mean

100

Chapter 6. Name Service and Resolver Configuration

the server was temporarily unable to accept connections. The default action for this status is
continue.

A simple example of how you might use this mechanism is shown in Example 6-3.

Example 6-3. Sample nsswitch.conf File Using an Action Statement

/etc/nsswitch.conf

#

Example configuration of GNU Name Service Switch functionality.

Information about this file is available in the ‘libc6-doc’ package.

hosts: dns [!UNAVAIL=return] files
networks: files

This example attempts host resolution using the Domain Name Service system. If the return status is
anything other than unavailable, the resolver returns whatever it has found. If, and only if, the DNS
lookup attempt returns an unavailable status, the resolver attempts to use the local /etc/hosts. This
means that we should use the hosts file only if our name server is unavailable for some reason.

6.1.3. Configuring Name Server Lookups Using resolv.conf

When configuring the resolver library to use the BIND name service for host lookups, you also have to
tell it which name servers to use. There is a separate file for this called resolv.conf. If this file does
not exist or is empty, the resolver assumes the name server is on your local host.

To run a name server on your local host, you have to set it up separately, as will be explained in the
following section. If you are on a local network and have the opportunity to use an existing name server,
this should always be preferred. If you use a dialup IP connection to the Internet, you would normally
specify the name server of your service provider in the resolv.conf file.

The most important option in resolv.conf is name server, which gives the IP address of a name server
to use. If you specify several name servers by giving the name server option several times, they are tried
in the order given. You should therefore put the most reliable server first. The current implementation
allows you to have up to three name server statements in resolv.conf. If no name server option is
given, the resolver attempts to connect to the name server on the local host.

Two other options, domain and search, let you use shortcut names for hosts in your local domain.
Usually, when just telnetting to another host in your local domain, you don’t want to type in the fully
qualified hostname, but use a name like gauss on the command line and have the resolver tack on the
mathematics.groucho.edu part.

101

Chapter 6. Name Service and Resolver Configuration

This is just the domain statement’s purpose. It lets you specify a default domain name to be appended
when DNS fails to look up a hostname. For instance, when given the name gauss, the resolver fails to
find gauss. in DNS, because there is no such top-level domain. When given mathematics.groucho.edu as
a default domain, the resolver repeats the query for gauss with the default domain appended, this time
succeeding.

That’s just fine, you may think, but as soon you get out of the Math department’s domain, you’re back to
those fully qualified domain names. Of course, you would also want to have shorthands like
quark.physics for hosts in the Physics department’s domain.

This is when the search list comes in. A search list can be specified using the search option, which is a
generalization of the domain statement. Where the latter gives a single default domain, the former
specifies a whole list of them, each to be tried in turn until a lookup succeeds. This list must be separated
by blanks or tabs.

The search and domain statements are mutually exclusive and may not appear more than once. If neither
option is given, the resolver will try to guess the default domain from the local hostname using the
getdomainname (2) system call. If the local hostname doesn’t have a domain part, the default domain
will be assumed to be the root domain.

If you decide to put a search statement into resolv.conf, you should be careful about what domains
you add to this list. Resolver libraries prior to BIND 4.9 used to construct a default search list from the
domain name when no search list was given. This default list was made up of the default domain itself,
plus all of its parent domains up to the root. This caused some problems because DNS requests wound up
at name servers that were never meant to see them.

Assume you’re at the Virtual Brewery and want to log in to foot.groucho.edu. By a slip of your fingers,
you mistype foot as foo, which doesn’t exist. GMU’s name server will therefore tell you that it knows no
such host. With the old-style search list, the resolver would now go on trying the name with vbrew.com
and com appended. The latter is problematic because groucho.edu.com might actually be a valid domain
name. Their name server might then even find foo in their domain, pointing you to one of their
hosts—which clearly was not intended.

For some applications, these bogus host lookups can be a security problem. Therefore, you should
usually limit the domains on your search list to your local organization, or something comparable. At the
Mathematics department of Groucho Marx University, the search list would commonly be set to
maths.groucho.edu and groucho.edu.

If default domains sound confusing to you, consider this sample resolv.conf file for the Virtual
Brewery:

/etc/resolv.conf
Our domain
domain vbrew.com

#

102

Chapter 6. Name Service and Resolver Configuration

We use vlager as central name server:
name server 172.16.1.1

When resolving the name vale, the resolver looks up vale and, failing this, vale.vbrew.com.

6.1.4. Resolver Robustness

When running a LAN inside a larger network, you definitely should use central name servers if they are
available. The name servers develop rich caches that speed up repeat queries, since all queries are
forwarded to them. However, this scheme has a drawback: when a fire destroyed the backbone cable at
Olaf’s university, no more work was possible on his department’s LAN because the resolver could no
longer reach any of the name servers. This situation caused difficulties with most network services, such
as X terminal logins and printing.

Although it is not very common for campus backbones to go down in flames, one might want to take
precautions against cases like this.

One option is to set up a local name server that resolves hostnames from your local domain and forwards
all queries for other hostnames to the main servers. Of course, this is applicable only if you are running
your own domain.

Alternatively, you can maintain a backup host table for your domain or LAN in /etc/hosts. This is
very simple to do. You simply ensure that the resolver library queries DNS first, and the hosts file next.
In an /etc/host.conf file you’d use “order bind,hosts”, and in an /etc/nsswitch.conf file you'd
use “hosts: dns files”, to make the resolver fall back to the hosts file if the central name server is
unreachable.

6.2. How DNS Works

DNS organizes hostnames in a domain hierarchy. A domain is a collection of sites that are related in
some sense—because they form a proper network (e.g., all machines on a campus, or all hosts on
BITNET), because they all belong to a certain organization (e.g., the U.S. government), or because
they’re simply geographically close. For instance, universities are commonly grouped in the edu domain,
with each university or college using a separate subdomain, below which their hosts are subsumed.
Groucho Marx University have the groucho.edu domain, while the LAN of the Mathematics department
is assigned maths.groucho.edu. Hosts on the departmental network would have this domain name tacked
onto their hostname, so erdos would be known as erdos.maths.groucho.edu. This is called the fully
qualified domain name (FQDN), which uniquely identifies this host worldwide.

103

Chapter 6. Name Service and Resolver Configuration

Figure 6-1 shows a section of the namespace. The entry at the root of this tree, which is denoted by a

single dot, is quite appropriately called the root domain and encompasses all other domains. To indicate

that a hostname is a fully qualified domain name, rather than a name relative to some (implicit) local

domain, it is sometimes written with a trailing dot. This dot signifies that the name’s last component is

the root domain.

Figure 6-1. A part of the domain namespace

Depending on its location in the name hierarchy, a domain may be called top-level, second-level, or

third-level. More levels of subdivision occur, but they are rare. This list details several top-level domains

you may see frequently:

mmmﬁption

104

DBEsiription

Chapter 6. Name Service and Resolver Configuration

105

DBEsiription

Chapter 6. Name Service and Resolver Configuration

106

Chapter 6. Name Service and Resolver Configuration

DBEsiription

107

Chapter 6. Name Service and Resolver Configuration

Dbesaiription

ames

nerly
Ised

q

1

f

1

U

g
UuCP
names
with-
out
d
1
h
b
1
t
t
d
1

o-
nains
1ave
een
noved

nain.

Historically, the first four of these were assigned to the U.S., but recent changes in policy have meant that
these domains, named global Top Level Domains (gTLD), are now considered global in nature.
Negotiations are currently underway to broaden the range of gTLDs, which may result in increased
choice in the future.

Outside the U.S., each country generally uses a top-level domain of its own named after the two-letter
country code defined in ISO-3166. Finland, for instance, uses the fi domain; fr is used by France, de by
Germany, and au by Australia. Below this top-level domain, each country’s NIC is free to organize
hostnames in whatever way they want. Australia has second-level domains similar to the international
top-level domains, named com.au and edu.au. Other countries, like Germany, don’t use this extra level,
but have slightly long names that refer directly to the organizations running a particular domain. It’s not
uncommon to see hostnames like ftp.informatik.uni-erlangen.de. Chalk that up to German efficiency.

Of course, these national domains do not imply that a host below that domain is actually located in that
country; it means only that the host has been registered with that country’s NIC. A Swedish manufacturer
might have a branch in Australia and still have all its hosts registered with the se top-level domain.

108

Chapter 6. Name Service and Resolver Configuration

Organizing the namespace in a hierarchy of domain names nicely solves the problem of name
uniqueness; with DNS, a hostname has to be unique only within its domain to give it a name different
from all other hosts worldwide. Furthermore, fully qualified names are easy to remember. Taken by
themselves, these are already very good reasons to split up a large domain into several subdomains.

DNS does even more for you than this. It also allows you to delegate authority over a subdomain to its
administrators. For example, the maintainers at the Groucho Computing Center might create a
subdomain for each department; we already encountered the math and physics subdomains above. When
they find the network at the Physics department too large and chaotic to manage from outside (after all,
physicists are known to be an unruly bunch of people), they may simply pass control of the
physics.groucho.edu domain to the administrators of this network. These administrators are free to use
whatever hostnames they like and assign them IP addresses from their network in whatever fashion they
desire, without outside interference.

To this end, the namespace is split up into zones, each rooted at a domain. Note the subtle difference
between a zone and a domain: the domain groucho.edu encompasses all hosts at Groucho Marx
University, while the zone groucho.edu includes only the hosts that are managed by the Computing
Center directly; those at the Mathematics department, for example. The hosts at the Physics department
belong to a different zone, namely physics.groucho.edu. In Figure 6-1, the start of a zone is marked by a
small circle to the right of the domain name.

6.2.1. Name Lookups with DNS

At first glance, all this domain and zone fuss seems to make name resolution an awfully complicated
business. After all, if no central authority controls what names are assigned to which hosts, how is a
humble application supposed to know?

Now comes the really ingenious part about DNS. If you want to find the IP address of erdos, DNS says,
“Go ask the people who manage it, and they will tell you.”

In fact, DNS is a giant distributed database. It is implemented by so-called name servers that supply
information on a given domain or set of domains. For each zone there are at least two, or at most a few,
name servers that hold all authoritative information on hosts in that zone. To obtain the IP address of
erdos, all you have to do is contact the name server for the groucho.edu zone, which will then return the
desired data.

Easier said than done, you might think. So how do I know how to reach the name server at Groucho
Marx University? In case your computer isn’t equipped with an address-resolving oracle, DNS provides
for this, too. When your application wants to look up information on erdos, it contacts a local name
server, which conducts a so-called iterative query for it. It starts off by sending a query to a name server
for the root domain, asking for the address of erdos.maths.groucho.edu. The root name server recognizes
that this name does not belong to its zone of authority, but rather to one below the edu domain. Thus, it

109

Chapter 6. Name Service and Resolver Configuration

tells you to contact an edu zone name server for more information and encloses a list of all edu name
servers along with their addresses. Your local name server will then go on and query one of those, for
instance, a.isi.edu. In a manner similar to the root name server, a.isi.edu knows that the groucho.edu
people run a zone of their own, and points you to their servers. The local name server will then present
its query for erdos to one of these, which will finally recognize the name as belonging to its zone, and
return the corresponding IP address.

This looks like a lot of traffic being generated for looking up a measly IP address, but it’s really only
miniscule compared to the amount of data that would have to be transferred if we were still stuck with
HOSTS . TXT. There’s still room for improvement with this scheme, however.

To improve response time during future queries, the name server stores the information obtained in its
local cache. So the next time anyone on your local network wants to look up the address of a host in the
groucho.edu domain, your name server will go directly to the groucho.edu name server.'

Of course, the name server will not keep this information forever; it will discard it after some time. The
expiration interval is called the time fo live, or TTL. Each datum in the DNS database is assigned such a
TTL by administrators of the responsible zone.

6.2.2. Types of Name Servers

Name servers that hold all information on hosts within a zone are called authoritative for this zone, and
sometimes are referred to as master name servers. Any query for a host within this zone will end up at
one of these master name servers.

Master servers must be fairly well synchronized. Thus, the zone’s network administrator must make one
the primary server, which loads its zone information from data files, and make the others secondary
servers, which transfer the zone data from the primary server at regular intervals.

110

Chapter 6. Name Service and Resolver Configuration

Having several name servers distributes workload; it also provides backup. When one name server
machine fails in a benign way, like crashing or losing its network connection, all queries will fall back to
the other servers. Of course, this scheme doesn’t protect you from server malfunctions that produce
wrong replies to all DNS requests, such as from software bugs in the server program itself.

You can also run a name server that is not authoritative for any domain.? This is useful, as the name
server will still be able to conduct DNS queries for the applications running on the local network and
cache the information. Hence it is called a caching-only server.

6.2.3. The DNS Database

We have seen that DNS not only deals with IP addresses of hosts, but also exchanges information on
name servers. DNS databases may have, in fact, many different types of entries.

A single piece of information from the DNS database is called a resource record (RR). Each record has a
type associated with it describing the sort of data it represents, and a class specifying the type of network
it applies to. The latter accommodates the needs of different addressing schemes, like IP addresses (the
IN class), Hesiod addresses (used by MIT’s Kerberos system), and a few more. The prototypical resource
record type is the A record, which associates a fully qualified domain name with an IP address.

A host may be known by more than one name. For example you might have a server that provides both
FTP and World Wide Web servers, which you give two names: ftp.machine.org and www.machine.org.
Howeyver, one of these names must be identified as the official or canonical hostname, while the others
are simply aliases referring to the official hostname. The difference is that the canonical hostname is the
one with an associated A record, while the others only have a record of type CNAME that points to the
canonical hostname.

We will not go through all record types here, but we will give you a brief example. Example 6-4 shows a
part of the domain database that is loaded into the name servers for the physics.groucho.edu zone.

Example 6-4. An Excerpt from the named.hosts File for the Physics Department

; Authoritative Information on physics.groucho.edu.
@ 1IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {

1999090200 ; serial no
360000 ; refresh
3600 ; retry
3600000 ; expire
3600 ; default ttl
}
’
; Name servers
IN NS niels
IN NS gauss.maths.groucho.edu.

gauss.maths.groucho.edu. IN A 149.76.4.23

’

111

Chapter 6. Name Service and Resolver Configuration

; Theoretical Physics (subnet 12)

niels IN A 149.76.12.1
IN A 149.76.1.12

name server IN CNAME niels

otto IN A 149.76.12.2

quark IN A 149.76.12.4

down IN A 149.76.12.5

strange IN A 149.76.12.6

; Collider Lab. (subnet 14)

boson IN A 149.76.14.1
muon IN A 149.76.14.7
bogon IN A 149.76.14.12

Apart from the A and CNAME records, you can see a special record at the top of the file, stretching
several lines. This is the SOA resource record signaling the Start of Authority, which holds general

information on the zone the server is authoritative for. The SOA record comprises, for instance, the
default time to live for all records.

Note that all names in the sample file that do not end with a dot should be interpreted relative to the
physics.groucho.edu domain. The special name (@) used in the Soa record refers to the domain name by
itself.

We have seen earlier that the name servers for the groucho.edu domain somehow have to know about the
physics zone so that they can point queries to their name servers. This is usually achieved by a pair of
records: the NS record that gives the server’s FQDN, and an A record that associates an address with that
name. Since these records are what holds the namespace together, they are frequently called glue
records. They are the only instances of records in which a parent zone actually holds information on
hosts in the subordinate zone. The glue records pointing to the name servers for physics.groucho.edu are
shown in Example 6-5.

Example 6-5. An Excerpt from the named.hosts File for GMU

; Zone data for the groucho.edu zone.
@ 1IN SOA vaxl2.gcc.groucho.edu. joe.vaxl2.gcc.groucho.edu. {

1999070100 ; serial no
360000 ; refresh
3600 ; retry
3600000 ; expire

3600 ; default ttl

’

; Glue records for the physics.groucho.edu zone

physics IN NS niels.physics.groucho.edu.
IN NS gauss.maths.groucho.edu.

niels.physics 1IN A 149.76.12.1

gauss.maths IN A 149.76.4.23

112

Chapter 6. Name Service and Resolver Configuration

6.2.4. Reverse Lookups

Finding the IP address belonging to a host is certainly the most common use for the Domain Name
System, but sometimes you’ll want to find the canonical hostname corresponding to an address. Finding
this hostname is called reverse mapping, and is used by several network services to verify a client’s
identity. When using a single host s file, reverse lookups simply involve searching the file for a host that
owns the IP address in question. With DNS, an exhaustive search of the namespace is out of the question.
Instead, a special domain, in-addr.arpa, has been created that contains the IP addresses of all hosts in a
reversed dotted quad notation. For instance, an IP address of 149.76.12.4 corresponds to the name
4.12.76.149.in-addr.arpa. The resource-record type linking these names to their canonical hostnames is
PTR.

Creating a zone of authority usually means that its administrators have full control over how they assign
addresses to names. Since they usually have one or more IP networks or subnets at their hands, there’s a
one-to-many mapping between DNS zones and IP networks. The Physics department, for instance,
comprises the subnets 149.76.8.0, 149.76.12.0, and 149.76.14.0.

Consequently, new zones in the in-addr.arpa domain have to be created along with the physics zone, and
delegated to the network administrators at the department: 8.76.149.in-addr.arpa, 12.76.149.in-addr.arpa,
and 14.76.149.in-addr.arpa. Otherwise, installing a new host at the Collider Lab would require them to
contact their parent domain to have the new address entered into their in-addr.arpa zone file.

The zone database for subnet 12 is shown in Example 6-6. The corresponding glue records in the
database of their parent zone are shown in Example 6-7.

Example 6-6. An Excerpt from the named.rev File for Subnet 12

; the 12.76.149.in-addr.arpa domain.
@ 1IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {
1999090200 360000 3600 3600000 3600

2 IN PTR otto.physics.groucho.edu.

4 IN PTR quark.physics.groucho.edu.

5 IN PTR down.physics.groucho.edu.

6 IN PTR strange.physics.groucho.edu.

Example 6-7. An Excerpt from the named.rev File for Network 149.76
; the 76.149.in-addr.arpa domain.

@ 1IN SOA vaxl2.gcc.groucho.edu. joe.vaxl2.gcc.groucho.edu. {
1999070100 360000 3600 3600000 3600

113

Chapter 6. Name Service and Resolver Configuration

; subnet 4: Mathematics Dept.

1.4 IN PTR sophus.maths.groucho.edu.
17.4 IN PTR erdos.maths.groucho.edu.
23.4 IN PTR gauss.maths.groucho.edu.

; subnet 12: Physics Dept, separate zone

12 IN NS niels.physics.groucho.edu.
IN NS gauss.maths.groucho.edu.

niels.physics.groucho.edu. IN A 149.76.12.1

gauss.maths.groucho.edu. IN A 149.76.4.23

in-addr.arpa system zones can only be created as supersets of IP networks. An even more severe
restriction is that these networks’ netmasks have to be on byte boundaries. All subnets at Groucho Marx
University have a netmask of 255.255.255.0, hence an in-addr.arpa zone could be created for each
subnet. However, if the netmask were 255.255.255.128 instead, creating zones for the subnet
149.76.12.128 would be impossible, because there’s no way to tell DNS that the 12.76.149.in-addr.arpa
domain has been split into two zones of authority, with hostnames ranging from 1 through 127, and 128
through 255, respectively.

6.3. Running named

named (pronounced name-dee) provides DNS on most Unix machines. It is a server program originally
developed for BSD to provide name service to clients, and possibly to other name servers. BIND Version
4 was around for some time and appeared in most Linux distributions. The new release, Version 8, has
been introduced in most Linux distributions, and is a big change from previous versions.® It has many
new features, such as support for DNS dynamic updates, DNS change notifications, much improved
performance, and a new configuration file syntax. Please check the documentation contained in the
source distribution for details.

This section requires some understanding of the way DNS works. If the following discussion is all Greek
to you, you may want to reread the section Section 6.2."

named is usually started at system boot time and runs until the machine goes down again.
Implementations of BIND prior to Version 8 take their information from a configuration file called
/etc/named.boot and various files that map domain names to addresses. The latter are called zone files.
Versions of BIND from Version 8 onwards use /etc/named.conf in place of /etc/named.boot.

To run named at the prompt, enter:

/usr/sbin/named

114

Chapter 6. Name Service and Resolver Configuration

named will come up and read the named.boot file and any zone files specified therein. It writes its
process ID to /var/run/named.pid in ASCII, downloads any zone files from primary servers, if
necessary, and starts listening on port 53 for DNS queries.

6.3.1. The named.boot File

The BIND configuration file prior to Version 8 was very simple in structure. BIND Version 8 has a very
different configuration file syntax to deal with many of the new features introduced. The name of the
configuration file changed from /etc/named.boot, in older versions of BIND, to /etc/named.conf
in BIND Version 8. We’ll focus on configuring the older version because it is probably what most
distributions are still using, but we’ll present an equivalent named. conf to illustrate the differences, and
we’ll talk about how to convert the old format into the new one.

The named.boot file is generally small and contains little but pointers to master files containing zone
information and pointers to other name servers. Comments in the boot file start with the (#) or (;)
characters and extend to the next newline. Before we discuss the format of named.boot in more detail,
we will take a look at the sample file for vlager given in Example 6-8.

Example 6-8. The named.boot File for vlager

7
; /etc/named.boot file for vlager.vbrew.com

’

directory /var/named

;

; domain file

cache . named.ca
primary vbrew.com named.hosts
primary 0.0.127.in-addr.arpa named. local
primary 16.172.in-addr.arpa named.rev

Let’s look at each statement individually. The directory keyword tells named that all filenames referred
to later in this file, zone files for example, are located in the /var/named directory. This saves a little

typing.

The primary keyword shown in this example loads information into named. This information is taken
from the master files specified as the last of the parameters. These files represent DNS resource records,
which we will look at next.

In this example, we configured named as the primary name server for three domains, as indicated by the
three primary statements. The first of these statements instructs named to act as a primary server for
vbrew.com, taking the zone data from the file named.hosts.

115

Chapter 6. Name Service and Resolver Configuration

The cache keyword is very special and should be present on virtually all machines running a name
server. It instructs named to enable its cache and to load the root name server hints from the cache file
specified (named. ca in our example). We will come back to the name server hints in the following list.

Here’s a list of the most important options you can use in named.boot :

directory

This option specifies a directory in which zone files reside. Names of files in other options may be
given relative to this directory. Several directories may be specified by repeatedly using directory.
The Linux file system standard suggests this should be /var/named.

primary

This option takes a domain name and filename as an argument, declaring the local server
authoritative for the named domain. As a primary server, named loads the zone information from
the given master file.

There will always be at least one primary entry in every boot file used for reverse mapping of
network 127.0.0.0, which is the local loopback network.

secondary

This statement takes a domain name, an address list, and a filename as an argument. It declares the
local server a secondary master server for the specified domain.

A secondary server holds authoritative data on the domain, too, but it doesn’t gather it from files;
instead, it tries to download it from the primary server. The IP address of at least one primary server
thus must be given to named in the address list. The local server contacts each of them in turn until
it successfully transfers the zone database, which is then stored in the backup file given as the third
argument. If none of the primary servers responds, the zone data is retrieved from the backup file
instead.

named then attempts to refresh the zone data at regular intervals. This process is explained later in
connection with the SOA resource record type.

cache

This option takes a domain name and filename as arguments. This file contains the root server
hints, which is a list of records pointing to the root name servers. Only NS and A records will be
recognized. The domain should be the root domain name, a simple period (.).

This information is absolutely crucial to named; if the cache statement does not occur in the boot
file, named will not develop a local cache at all. This situation/lack of development will severely
degrade performance and increase network load if the next server queried is not on the local net.
Moreover, named will not be able to reach any root name servers, and thus won’t resolve any

116

Chapter 6. Name Service and Resolver Configuration

addresses except those it is authoritative for. An exception from this rule involves forwarding
servers (see the forwarders option that follows).

forwarders

This statement takes a whitespace-separated list of addresses as an argument. The IP addresses in
this list specify a list of name servers that named may query if it fails to resolve a query from its

local cache. They are tried in order until one of them responds to the query. Typically, you would
use the name server of your network provider or another well-known server as a forwarder.

slave

This statement makes the name server a slave server. It never performs recursive queries itself, but
only forwards them to servers specified in the forwarders statement.

There are two options that we will not describe here: sortlist and domain. Two other directives may also
be used inside these database files: SINCLUDE and $ORIGIN. Since they are rarely needed, we will not
describe them here, either.

6.3.2. The BIND 8 host.conf File

BIND Version 8 introduced a range of new features, and with these came a new configuration file syntax.
The named.boot, with its simple single line statements, was replaced by the named. conf file, with a
syntax like that of gated and resembling C source syntax.

The new syntax is more complex, but fortunately a tool has been provided that automates conversion
from the old syntax to the new syntax. In the BIND 8 source package, a perl program called
named-bootconf.pl is provided that will read your existing named.boot file from stdin and convert it
into the equivalent named. conf format on stdout. To use it, you must have the perl interpreter
installed.

You should use the script somewhat like this:

cd /ete

named-bootconf.pl <named.boot >named.conf

The script then produces a named. conf that looks like that shown in Example 6-9. We’ve cleaned out a
few of the helpful comments the script includes to help show the almost direct relationship between the
old and the new syntax.

Example 6-9. The BIND 8 equivalent named.conf File for vlager

//

// /etc/named.boot file for vlager.vbrew.com
options {

directory "/var/named";

bi

117

Chapter 6. Name Service and Resolver Configuration

zone "." {
type hint;
file "named.ca";

bi

zone "vbrew.com" {
type master;

file "named.hosts";
bi

zone "0.0.127.in-addr.arpa" {
type master;

file "named.local";

}i

zone "16.172.in-addr.arpa" {
type master;
file "named.rev";

bi

If you take a close look, you will see that each of the one-line statements in named.boot has been
converted into a C-like statement enclosed within { } characters in the named. conf file.

The comments, which in the named.boot file were indicated by a semicolon (;), are now indicated by
two forward slashes (//).

The directory statement has been translated into an options paragraph with a directory clause.

The cache and primary statements have been converted into zone paragraphs with type clauses of hint
and master, respectively.

The zone files do not need to be modified in any way; their syntax remains unchanged.

The new configuration syntax allows for many new options that we haven’t covered here. If you’d like
information on the new options, the best source of information is the documentation supplied with the
BIND Version 8 source package.

6.3.3. The DNS Database Files

Master files included with named, like named.hosts, always have a domain associated with them, which
is called the origin. This is the domain name specified with the cache and primary options. Within a
master file, you are allowed to specify domain and host names relative to this domain. A name given in a
configuration file is considered absolute if it ends in a single dot, otherwise it is considered relative to the
origin. The origin by itself may be referred to using (@).

118

Chapter 6. Name Service and Resolver Configuration

The data contained in a master file is split up in resource records (RRs). RRs are the smallest units of
information available through DNS. Each resource record has a type. A records, for instance, map a
hostname to an IP address, and a CNAME record associates an alias for a host with its official hostname.
To see an example, look at Example 6-11, which shows the named.hosts master file for the Virtual
Brewery.

Resource record representations in master files share a common format:

[domain] [ttl] [class] type rdata

Fields are separated by spaces or tabs. An entry may be continued across several lines if an opening
brace occurs before the first newline and the last field is followed by a closing brace. Anything between a
semicolon and a newline is ignored. A description of the format terms follows:

domain

This term is the domain name to which the entry applies. If no domain name is given, the RR is
assumed to apply to the domain of the previous RR.

ttl

In order to force resolvers to discard information after a certain time, each RR is associated a time
to live (#1). The ttl field specifies the time in seconds that the information is valid after it has been
retrieved from the server. It is a decimal number with at most eight digits.

If no ttl value is given, the field value defaults to that of the minimum field of the preceding SOA
record.

class

This is an address class, like IN for IP addresses or HS for objects in the Hesiod class. For TCP/IP
networking, you have to specify IN.

If no class field is given, the class of the preceding RR is assumed.

type
This describes the type of the RR. The most common types are A, SOA, PTR, and NS. The
following sections describe the various types of RRs.

rdata

This holds the data associated with the RR. The format of this field depends on the type of RR. In
the following discussion, it will be described for each RR separately.

119

Chapter 6. Name Service and Resolver Configuration

The following is partial list of RRs to be used in DNS master files. There are a couple more of them that
we will not explain; they are experimental and of little use, generally.

SOA

This RR describes a zone of authority (SOA means “Start of Authority”). It signals that the
records following the SOA RR contain authoritative information for the domain. Every master file
included by a primary statement must contain an SOA record for this zone. The resource data
contains the following fields:

origin

This field is the canonical hostname of the primary name server for this domain. It is usually
given as an absolute name.

contact

This field is the email address of the person responsible for maintaining the domain, with the
"@" sign replaced by a dot. For instance, if the responsible person at the Virtual Brewery were
janet, this field would contain janet.vbrew.com.

serial

This field is the version number of the zone file, expressed as a single decimal number.
Whenever data is changed in the zone file, this number should be incremented. A common
convention is to use a number that reflects the date of the last update, with a version number
appended to it to cover the case of multiple updates occurring on a single day, e.g.,
2000012600 being update 00 that occurred on January 26, 2000.

The serial number is used by secondary name servers to recognize zone information changes.
To stay up to date, secondary servers request the primary server’s SOA record at certain
intervals and compare the serial number to that of the cached SOA record. If the number has
changed, the secondary servers transfer the whole zone database from the primary server.

refresh

This field specifies the interval in seconds that the secondary servers should wait between
checking the SOA record of the primary server. Again, this is a decimal number with at most
eight digits.

Generally, the network topology doesn’t change too often, so this number should specify an
interval of roughly a day for larger networks, and even more for smaller ones.

retry

This number determines the intervals at which a secondary server should retry contacting the
primary server if a request or a zone refresh fails. It must not be too low, or a temporary failure
of the server or a network problem could cause the secondary server to waste network
resources. One hour, or perhaps one-half hour, might be a good choice.

120

NS

Chapter 6. Name Service and Resolver Configuration

expire

This field specifies the time in seconds after which a secondary server should finally discard all
zone data if it hasn’t been able to contact the primary server. You should normally set this field
to at least a week (604,800 seconds), but increasing it to a month or more is also reasonable.

minimum

This field is the default ##/ value for resource records that do not explicitly contain one. The ttl
value specifies the maximum amount of time other name servers may keep the RR in their
cache. This time applies only to normal lookups, and has nothing to do with the time after
which a secondary server should try to update the zone information.

If the topology of your network does not change frequently, a week or even more is probably a
good choice. If single RRs change more frequently, you could still assign them smaller ttls
individually. If your network changes frequently, you may want to set minimum to one day
(86,400 seconds).

This record associates an IP address with a hostname. The resource data field contains the address
in dotted quad notation.

For each hostname, there must be only one A record. The hostname used in this A record is
considered the official or canonical hostname. All other hostnames are aliases and must be mapped
onto the canonical hostname using a CNAME record. If the canonical name of our host were vlager,
we’d have an A record that associated that hostname with its IP address. Since we may also want
another name associated with that address, say news, we’d create a CNAME record that associates
this alternate name with the canonical name. We’ll talk more about CNAME records shortly.

NS records are used to specify a zone’s primary server and all its secondary servers. An NS record
points to a master name server of the given zone, with the resource data field containing the
hostname of the name server.

You will meet NS records in two situations: The first situation is when you delegate authority to a
subordinate zone; the second is within the master zone database of the subordinate zone itself. The
sets of servers specified in both the parent and delegated zones should match.

The NS record specifies the name of the primary and secondary name servers for a zone. These
names must be resolved to an address so they can be used. Sometimes the servers belong to the
domain they are serving, which causes a “chicken and egg” problem; we can’t resolve the address
until the name server is reachable, but we can’t reach the name server until we resolve its address.
To solve this dilemma, we can configure special A records directly into the name server of the
parent zone. The A records allow the name servers of the parent domain to resolve the IP address of

121

Chapter 6. Name Service and Resolver Configuration

the delegated zone name servers. These records are commonly called glue records because they
provide the “glue” that binds a delegated zone to its parent.

CNAME

This record associates an alias with a host’s canonical hostname. It provides an alternate name by
which users can refer to the host whose canonical name is supplied as a parameter. The canonical
hostname is the one the master file provides an A record for; aliases are simply linked to that name
by a CNAME record, but don’t have any other records of their own.

PTR

This type of record is used to associate names in the in-addr.arpa domain with hostnames. It is used
for reverse mapping of IP addresses to hostnames. The hostname given must be the canonical
hostname.

MX

This RR announces a mail exchanger for a domain. Mail exchangers are discussed in Section
17.4.1.” The syntax of an MX record is:

[domain] [ttl] [class] MX preference host

host names the mail exchanger for domain. Every mail exchanger has an integer preference
associated with it. A mail transport agent that wants to deliver mail to domain tries all hosts who
have an MX record for this domain until it succeeds. The one with the lowest preference value is
tried first, then the others, in order of increasing preference value.

HINFO

This record provides information on the system’s hardware and software. Its syntax is:

[domain] [ttl] [class] HINFO hardware software

The hardware field identifies the hardware used by this host. Special conventions are used to
specify this. A list of valid “machine names” is given in the Assigned Numbers RFC (RFC-1700). If
the field contains any blanks, it must be enclosed in double quotes. The software field names the
operating system software used by the system. Again, a valid name from the Assigned Numbers
RFC should be chosen.

An HINFO record to describe an Intel-based Linux machine should look something like:

tao 36500 1IN HINFO IBM-PC LINUX2.2
and HINFO records for Linux running on Motorola 68000-based machines might look like:

cevad 36500 IN HINFO ATARI-104ST LINUX2.0
jedd 36500 IN HINFO AMIGA-3000 LINUX2.0

122

Chapter 6. Name Service and Resolver Configuration

6.3.4. Caching-only nhamed Configuration

There is a special type of named configuration that we’ll talk about before we explain how to build a full
name server configuration. It is called a caching-only configuration. It doesn’t really serve a domain, but
acts as a relay for all DNS queries produced on your host. The advantage of this scheme is that it builds
up a cache so only the first query for a particular host is actually sent to the name servers on the Internet.
Any repeated request will be answered directly from the cache in your local name server. This may not
seem useful yet, but it will when you are dialing in to the Internet, as described in Chapter 7 and Chapter
8.

A named.boot file for a caching-only server looks like this:

; named.boot file for caching-only server

directory /var/named
primary 0.0.127.in-addr.arpa named.local ; localhost network
cache . named.ca ; root servers

In addition to this named.boot file, you must set up the named. ca file with a valid list of root name
servers. You could copy and use Example 6-10 for this purpose. No other files are needed for a
caching-only server configuration.

6.3.5. Writing the Master Files

Example 6-10, Example 6-11, Example 6-12, and Example 6-13 give sample files for a name server at
the brewery, located on vlager. Due to the nature of the network discussed (a single LAN), the example is
pretty straightforward.

The named. ca cache file shown in Example 6-10 shows sample hint records for a root name server. A
typical cache file usually describes about a dozen name servers. You can obtain the current list of name
servers for the root domain using the nslookup tool described in the next section.*

Example 6-10. The named.ca File

; /var/named/named.ca Cache file for the brewery.

; We’re not on the Internet, so we don’t need

; any root servers. To activate these

; records, remove the semicolons.

;

;. 3600000 1IN NS A.ROOT-SERVERS.NET.
;A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

;. 3600000 NS B.ROOT-SERVERS.NET.
;B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

;. 3600000 NS C.ROOT-SERVERS.NET.

123

Chapter 6. Name Service and Resolver Configuration

; C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

;. 3600000 NS D.ROOT-SERVERS.NET.
;D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90

;- 3600000 NS E.ROOT-SERVERS.NET.
; E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10

H 3600000 NS F.ROOT-SERVERS.NET.
; F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241

;- 3600000 NS G.ROOT-SERVERS.NET.
; G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4

;- 3600000 NS H.ROOT-SERVERS.NET.
; H.ROOT-SERVERS .NET. 3600000 A 128.63.2.53

;. 3600000 NS I.ROOT-SERVERS.NET.
; I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17

;- 3600000 NS J.ROOT-SERVERS.NET.
; J.ROOT-SERVERS .NET. 3600000 A 198.41.0.10

;- 3600000 NS K.ROOT-SERVERS.NET.
; K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129

;- 3600000 NS L.ROOT-SERVERS.NET.
; L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12

H 3600000 NS M.ROOT-SERVERS.NET.
;M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

Example 6-11. The named.hosts File

; /var/named/named.hosts Local hosts at the brewery

; Origin is vbrew.com

;

@ IN SOA vlager.vbrew.com. janet.vbrew.com. (
2000012601 ; serial
86400 ; refresh: once per day
3600 ; retry: one hour
3600000 ; expire: 42 days
604800 ; minimum: 1 week
)

IN NS vlager.vbrew.com.

; local mail is distributed on vlager
IN MX 10 vlager

;

; loopback address

localhost. IN A 127.0.0.1

;

; Virtual Brewery Ethernet

vlager IN A 172.16.1.1
vlager—-ifl IN CNAME vlager

; vlager is also news server

news IN CNAME vlager
vstout IN A 172.16.1.2
vale IN A 172.16.1.3

’

124

Chapter 6.

; Virtual Winery Ethernet

vlager—-if2
vbardolino
vchianti
vbeaujolais

;

; Virtual Spirits
vbourbon
vbourbon-ifl

IN
IN
IN
IN

A

A
A
A

172.16.2.
172.16.2.
172.16.2.
172.16.2.

Sw N

(subsidiary) Ethernet

IN A
IN CNAME vbourbon

172.16.3.1

Example 6-12. The named.local File

; /var/named/named.local

@ IN
IN
1 IN

SOA

NS
PTR

Name Service and Resolver Configuration

Reverse mapping of 127.0.0

Origin is 0.0.127.in-addr.arpa.

vlager.vbrew.com. joe.

1 ; serial
360000 ; refresh:
3600 ; retry:
3600000 ; expire:
360000 ; minimum:

)
vlager.vbrew.com.
localhost.

Example 6-13. The named.rev File

; /var/named/named.rev

@ IN
IN
; brewery
1.1 IN
2.1 IN
3.1 IN
; winery
1. IN
2.2 IN
3.2 IN
4.2 IN

SOA

NS

PTR
PTR
PTR

PTR
PTR
PTR
PTR

vbrew.com. (

100 hrs
one hour
42 days
100 hrs

Reverse mapping of our IP addresses

Origin is 16.172.in-addr.arpa.

vlager.vbrew.com. joe.

vbrew.com. (

16 ; serial

86400 ; refresh: once per day
3600 ; retry: one hour
3600000 ; expire: 42 days
604800 ; minimum: 1 week

)

vlager.vbrew.com.

vlager.vbrew.com.
vstout.vbrew.com.
vale.vbrew.com.

vlager-if2.vbrew.com.
vbardolino.vbrew.com.
vchianti.vbrew.com.
vbeaujolais.vbrew.com.

125

Chapter 6. Name Service and Resolver Configuration

6.3.6. Verifying the Name Server Setup

nslookup is a great tool for checking the operation of your name server setup. It can be used both
interactively with prompts and as a single command with immediate output. In the latter case, you
simply invoke it as:

S nslookup

hostname

nslookup queries the name server specified in resolv.conf for hostname. (If this file names more
than one server, nslookup chooses one at random.)

The interactive mode, however, is much more exciting. Besides looking up individual hosts, you may
query for any type of DNS record and transfer the entire zone information for a domain.

When invoked without an argument, nslookup displays the name server it uses and enters interactive
mode. At the > prompt, you may type any domain name you want to query. By default, it asks for class A
records, those containing the IP address relating to the domain name.

You can look for record types by issuing:

> set type=type
in which type is one of the resource record names described earlier, or ANY.

You might have the following nslookup session:
$ nslookup

Default Server: tao.linux.org.au
Address: 203.41.101.121

> metalab.unc.edu
Server: tao.linux.org.au

Address: 203.41.101.121

Name: metalab.unc.edu
Address: 152.2.254.81

The output first displays the DNS server being queried, and then the result of the query.

126

Chapter 6. Name Service and Resolver Configuration

If you try to query for a name that has no IP address associated with it, but other records were found in
the DNS database, nslookup returns with an error message saying “No type A records found.”
However, you can make it query for records other than type A by issuing the set type command. To get
the SOA record of unc.edu, you would issue:

> unc.edu
Server: tao.linux.org.au
Address: 203.41.101.121

+ No address (A) records available for unc.edu
> set type=SOA

> unc.edu

Server: tao.linux.org.au

Address: 203.41.101.121

unc.edu

origin = ns.unc.edu

mail addr = host-reg.ns.unc.edu

serial = 1998111011

refresh = 14400 (4H)

retry = 3600 (1H)

expire 1209600 (2W)

minimum ttl = 86400 (1D)
unc.edu name server = ns2.unc.edu

unc.edu name server = ncnoc.ncren.net

unc.edu name server = ns.unc.edu

ns2.unc.edu internet address = 152.2.253.100
ncnoc.ncren.net internet address = 192.101.21.1
ncnoc.ncren.net internet address = 128.109.193.1
ns.unc.edu internet address = 152.2.21.1

In a similar fashion, you can query for MX records:

> set type=MX

> unc.edu

Server: tao.linux.org.au
Address: 203.41.101.121

unc.edu preference = 0, mail exchanger = conga.oit.unc.edu
unc.edu preference = 10, mail exchanger = imsety.oit.unc.edu
unc.edu name server = ns.unc.edu

ns2.unc.edu

unc.edu name server

unc.edu name server = ncnoc.ncren.net
conga.oit.unc.edu internet address = 152.2.22.21
imsety.oit.unc.edu internet address = 152.2.21.99
ns.unc.edu internet address = 152.2.21.1
ns2.unc.edu internet address = 152.2.253.100
ncnoc.ncren.net internet address = 192.101.21.1
ncnoc.ncren.net internet address = 128.109.193.1

127

Chapter 6. Name Service and Resolver Configuration

Using a type of ANY returns all resource records associated with a given name.

A practical application of nslookup, besides debugging, is to obtain the current list of root name servers.
You can obtain this list by querying for all NS records associated with the root domain:

> set type=NS
>

Server:
Address:

tao.linux.org.au
203.41.101.121

Non—-authoritative answer:

(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name
(root) name

server
server
server
server
server
server
server
server
server
server
server
server
server

Authoritative answers

EERggOMMHEHOQDE@D P

.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS

.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET

A.
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS
.ROOT-SERVERS

REXR4gooH"MAHEOQmD

ROOT-SERVERS

.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET
.NET

can be found from:

internet
internet
internet
internet
internet
internet
internet
internet
internet
internet
internet
internet
internet

address
address
address
address
address
address
address
address
address
address
address
address
address

198.
128.
128.
.33.4.12
128.
192.
192.
192.
192.
198.
193.
198.
202.

192

41.0.4
63.2.53
9.0.107

8.10.90
203.230.10
36.148.17
5.5.241
112.36.4
41.0.10
0.14.129
32.64.12
12.27.33

To see the complete set of available commands, use the help command in nslookup.

128

Notes

Chapter 6. Name Service and Resolver Configuration

6.3.7. Other Useful Tools

There are a few tools that can help you with your tasks as a BIND administrator. We will briefly describe
two of them here. Please refer to the documentation that comes with these tools for more information on
how to use them.

hostcvt helps you with your initial BIND configuration by converting your /etc/hosts file into master
files for named. It generates both the forward (A) and reverse mapping (PTR) entries, and takes care of
aliases. Of course, it won’t do the whole job for you, as you may still want to tune the timeout values in
the SOA record, for example, or add MX records. Still, it may help you save a few aspirins. hostevt is
part of the BIND source, but can also be found as a standalone package on a few Linux FTP servers.

After setting up your name server, you may want to test your configuration. Some good tools that make
this job much simpler: the first is called dnswalk, which is a Perl-based package. The second is called
nslint. They both walk your DNS database looking for common mistakes and verify that the information
they find is consistent. Two other useful tools are host and dig, which are general purpose DNS database
query tools. You can use these tools to manually inspect and diagnose DNS database entries.

These tools are likely to be available in prepackaged form. dnswalk and nslint are available in source
from http://www.visi.com/~barr/dnswalk/ and ftp://ftp.ee.lbl.gov/nslint.tar.Z. The host and dig source
codes can be found at ftp://ftp.nikhef.nl/pub/network/ and ftp://ftp.is.co.za/networking/ip/dns/dig/.

1. If information weren’t cached, then DNS would be as inefficient as any other method because each
query would involve the root name servers.

2. Well, almost. A name server has to provide at least name service for localhost and reverse lookups of
127.0.0.1.

3. BIND 4.9 was developed by Paul Vixie, paul @vix.com, but BIND is now maintained by the Internet
Software Consortium, bind-bugs @isc.org.

4. Note that you can’t query your name server for the root servers if you don’t have any root server
hints installed. To escape this dilemma, you can either make nslookup use a different name server, or
use the sample file in Example 6-10 as a starting point, and then obtain the full list of valid servers.

129

Chapter 7. Serial Line IP

Packet protocols like IP or IPX rely upon the receiver host knowing where the start and end of each
packet are in the data stream. The mechanism used to mark and detect the start and end of packets is
called delimitation. The Ethernet protocol manages this mechanism in a LAN environment, and the SLIP
and PPP protocols manage it for serial communications lines.

The comparatively low cost of low-speed dialup modems and telephone circuits has made the serial line
IP protocols immensely popular, especially for providing connectivity to end users of the Internet. The
hardware required to run SLIP or PPP is simple and readily available. All that is required is a modem and
a serial port equipped with a FIFO buffer.

The SLIP protocol is very simple to implement and at one time was the more common of the two. Today
almost everyone uses the PPP protocol instead. The PPP protocol adds a host of sophisticated features
that contribute to its popularity today, and we’ll look at the most important of these later.

Linux supports kernel-based drivers for both SLIP and PPP. The drivers have both been around for some
time and are stable and reliable. In this chapter and the next, we’ll discuss both protocols and how to
configure them.

7.1. General Requirements

To use SLIP or PPP, you have to configure some basic networking features as described in the previous
chapters. You must set up the loopback interface and configure the name resolver. When connecting to
the Internet, you will want to use DNS. Your options here are the same as for PPP: you can perform your
DNS queries across your serial link by configuring your Internet Service Provider’s IP address into your
/etc/resolv.conf file, or configure a caching-only name server as described under Section 6.3.4,” in
Chapter 6."

7.2. SLIP Operation

Dialup IP servers frequently offer SLIP service through special user accounts. After logging in to such an
account, you are not dropped into the common shell; instead, a program or shell script is executed that
enables the server’s SLIP driver for the serial line and configures the appropriate network interface. Then
you have to do the same at your end of the link.

On some operating systems, the SLIP driver is a user-space program; under Linux, it is part of the kernel,
which makes it a lot faster. This speed requires, however, that the serial line be converted to the SLIP
mode explicitly. This conversion is done by means of a special tty line discipline, SLIPDISC. While the
tty is in normal line discipline (DISCO), it exchanges data only with user processes, using the normal

130

Chapter 7. Serial Line IP

read (2) and write (2) calls, and the SLIP driver is unable to write to or read from the tty. In
SLIPDISC, the roles are reversed: now any user-space processes are blocked from writing to or reading
from the tty, while all data coming in on the serial port is passed directly to the SLIP driver.

The SLIP driver itself understands a number of variations on the SLIP protocol. Apart from ordinary
SLIP, it also understands CSLIP, which performs the so-called Van Jacobson header compression
(described in RFC-1144) on outgoing IP packets. This compression improves throughput for interactive
sessions noticeably. There are also six-bit versions for each of these protocols.

A simple way to convert a serial line to SLIP mode is by using the slattach tool. Assume you have your
modem on /dev/ttyS3 and have logged in to the SLIP server successfully. You will then execute:

slattach /dev/ttyS3 &

This tool switches the line discipline of ttyS3 to SLIPDISC and attaches it to one of the SLIP network
interfaces. If this is your first active SLIP link, the line will be attached to s10 ; the second will be
attached to s11, and so on. The current kernels support a default maximum of 256 simultaneous SLIP
links.

The default line discipline chosen by slattach is CSLIP. You may choose any other discipline using the
-p switch. To use normal SLIP (no compression), you use:

slattach -p slip /dev/ttyS3 &

The disciplines available are listed in Table 7-1. A special pseudo-discipline is available called
adaptive, which causes the kernel to automatically detect which type of SLIP encapsulation is being
used by the remote end.

Table 7-1. Linux Slip-Line Disciplines

ipdon

131

Chapter 7. Serial Line IP

132

Chapter 7. Serial Line IP

133

Chapter 7. Serial Line IP

134

Chapter 7. Serial Line IP

135

Chapter 7. Serial Line IP

Note that you must use the same encapsulation as your peer. For example, if cowslip uses CSLIP, you
also have to do so. If your SLIP connection doesn’t work, the first thing you should do is ensure that both
ends of the link agree on whether to use header compression or not. If you are unsure what the remote
end is using, try configuring your host for adaptive slip. The kernel might figure out the right type for
you.

slattach lets you enable not only SLIP, but other protocols that use the serial line, like PPP or KISS
(another protocol used by ham radio people). Doing this is not common, though, and there are better
tools available to support these protocols. For details, please refer to the slattach (8) manual page.

After turning over the line to the SLIP driver, you must configure the network interface. Again, you do
this using the standard ifconfig and route commands. Assume that we have dialed up a server named
cowslip from vlager. On vlager you would execute:

ifconfig sl0 vlager-slip pointopoint cowslip
route add cowslip
route add default gw cowslip

The first command configures the interface as a point-to-point link to cowslip, while the second and third
add the route to cowslip and the default route, using cowslip as a gateway.

Two things are worth noting about the ifconfig invocation: The pointopoint option that specifies the
address of the remote end of a point-to-point link and our use of vlager-slip as the address of the local
SLIP interface.

We have mentioned that you can use the same address you assigned to vlager’s Ethernet interface for
your SLIP link, as well. In this case, vlager-slip might just be another alias for address 172.16.1.1.
However, it is also possible that you have to use an entirely different address for your SLIP link. One
such case is when your network uses an unregistered IP network address, as the Brewery does. We will
return to this scenario in greater detail in the next section.

For the remainder of this chapter we will always use vlager-slip to refer to the address of the local SLIP
interface.

When taking down the SLIP link, you should first remove all routes through cowslip using route with
the del option, then take the interface down, and send slattach the hangup signal. The you must hang up
the modem using your terminal program again:

route del default
route del cowslip
ifconfig s10 down
kill -HUP 516

H= o W

136

Chapter 7. Serial Line IP

Note that the 516 should be replaced with the process id (as shown in the output of ps ax) of the
slattach command controlling the slip device you wish to take down.

7.3. Dealing with Private IP Networks

You will remember from Chapter 5, that the Virtual Brewery has an Ethernet-based IP network using
unregistered network numbers that are reserved for internal use only. Packets to or from one of these
networks are not routed on the Internet; if we were to have vlager dial into cowslip and act as a router for
the Virtual Brewery network, hosts within the Brewery’s network could not talk to real Internet hosts
directly because their packets would be dropped silently by the first major router.

To work around this dilemma, we will configure vlager to act as a kind of launch pad for accessing
Internet services. To the outside world, it will present itself as a normal SLIP-connected Internet host
with a registered IP address (probably assigned by the network provider running cowslip). Anyone
logged in to vlager can use text-based programs like ftp, telnet, or even lynx to make use of the Internet.
Anyone on the Virtual Brewery LAN can therefore telnet and log in to vlager and use the programs there.
For some applications, there may be solutions that avoid logging in to vlager. For WWW users, for
example, we could run a so-called proxy server on vlager, which would relay all requests from your
users to their respective servers.

Having to log in to vlager to make use of the Internet is a little clumsy. But apart from eliminating the
paperwork (and cost) of registering an IP network, it has the added benefit of going along well with a
firewall setup. Firewalls are dedicated hosts used to provide limited Internet access to users on your local
network without exposing the internal hosts to network attacks from the outside world. Simple firewall
configuration is covered in more detail in Chapter 9. In Chapter 11, we’ll discuss a Linux feature called
“IP masquerade” that provides a powerful alternative to proxy servers.

Assume that the Brewery has been assigned the IP address 192.168.5.74 for SLIP access. All you have to
do to realize that the setup discussed above is to enter this address into your /etc/hosts file, naming it
vlager-slip. The procedure for bringing up the SLIP link itself remains unchanged.

7.4. Using dip

Now that was rather simple. Nevertheless, you might want to automate the steps previously described. It
would be much better to have a simple command that performs all the steps necessary to open the serial
device, cause the modem to dial the provider, log in, enable the SLIP line discipline, and configure the
network interface. This is what the dip command is for.

dip means Dialup IP. It was written by Fred van Kempen and has been patched very heavily by a number
of people. Today there is one strain that is used by almost everyone: Version dip337p—-uri, which is
included with most modern Linux distributions, or is available from the metalab.unc.edu FTP archive.

137

Chapter 7. Serial Line IP

dip provides an interpreter for a simple scripting language that can handle the modem for you, convert
the line to SLIP mode, and configure the interfaces. The script language is powerful enough to suit most
configurations.

To be able to configure the SLIP interface, dip requires root privilege. It would now be tempting to make
dip setuid to root so that all users can dial up some SLIP server without having to give them root access.
This is very dangerous, though, because setting up bogus interfaces and default routes with dip may
disrupt routing on your network. Even worse, this action would give your users power to connect to any
SLIP server and launch dangerous attacks on your network. If you want to allow your users to fire up a
SLIP connection, write small wrapper programs for each prospective SLIP server and have these
wrappers invoke dip with the specific script that establishes the connection. Carefully written wrapper
programs can then safely be made setuid to root.! An alternative, more flexible approach is to give trusted
users root access to dip using a program like sudo.

7.4.1. A Sample Script

Assume that the host to which we make our SLIP connection is cowslip, and that we have written a script
for dip to run called cows1lip.dip that makes our connection. We invoke dip with the script name as
argument:

dip cowslip.dip

DIP: Dialup IP Protocol Driver version 3.3.7 (12/13/93)
Written by Fred N. van Kempen, MicroWalt Corporation.
connected to cowslip.moo.com with addr 192.168.5.74

#

The script itself is shown in Example 7-1.

Example 7-1. A Sample dip Script

Sample dip script for dialing up cowslip

Set local and remote name and address

get $local vlager-slip

get S$remote cowslip

port ttyS3 # choose a serial port

speed 38400 # set speed to max

modem HAYES # set modem type

reset # reset modem and tty
flush # flush out modem response

Prepare for dialing.
send ATQOV1E1X1\r

wait OK 2
if S$errlvl != 0 goto error
dial 41988
if S$errlvl != 0 goto error

wait CONNECT 60

138

Chapter 7. Serial Line IP

if S$errlvl != 0 goto error

Okay, we’re connected now

sleep 3

send \r\n\r\n

wait ogin: 10

if S$errlvl != 0 goto error

send Svlager\n

wait ssword: 5

if Serrlvl != 0 goto error

send knockknock\n

wait running 30

if S$errlvl != 0 goto error

We have logged in, and the remote side is firing up SLIP.
print Connected to $remote with address S$rmtip

default # Make this link our default route
mode SLIP # We go to SLIP mode, too

fall through in case of error
error:

print SLIP to S$remote failed.

After connecting to cowslip and enabling SLIP, dip will detach from the terminal and go to the
background. You can then start using the normal networking services on the SLIP link. To terminate the
connection, simply invoke dip with the —k option. This sends a hangup signal to dip, using the process
ID dip records in /etc/dip.pid:

dip -k

In dip’s scripting language, keywords prefixed with a dollar symbol denote variable names. dip has a
predefined set of variables, which will be listed below. $remote and $local, for instance, contain the
hostnames of the remote and local hosts involved in the SLIP link.

The first two statements in the sample script are get commands, which is dip’s way to set a variable.
Here, the local and remote hostnames are set to vlager and cowslip, respectively.

The next five statements set up the terminal line and the modem. reset sends a reset string to the modem.
The next statement flushes out the modem response so that the login chat in the next few lines works
properly. This chat is pretty straightforward: it simply dials 41988, the phone number of cowslip, and
logs in to the account Svlager using the password knockknock. The wait command makes dip wait for
the string given as its first argument; the number given as its second argument makes the wait time out
after that many seconds if no such string is received. The if commands interspersed in the login
procedure check that no error occurred while executing the command.

The final commands executed after logging in are default, which makes the SLIP link the default route to
all hosts, and mode, which enables SLIP mode on the line and configures the interface and routing table
for you.

139

Chapter 7. Serial Line IP

7.4.2. A dip Reference

In this section, we will give a reference for most of dip’s commands. You can get an overview of all the
commands it provides by invoking dip in test mode and entering the help command. To learn about the
syntax of a command, you may enter it without any arguments. Remember that this does not work with
commands that take no arguments. The following example illustrates the help command:

dip -t

DIP: Dialup IP Protocol Driver version 3.3.7p-uri (25 Dec 96)
Written by Fred N. van Kempen, MicroWalt Corporation.

Debian version 3.3.7p-2 (debian).

DIP> help
DIP knows about the following commands:

beep bootp break chatkey config
databits dec default dial echo
flush get goto help if
inc init mode modem netmask
onexit parity password proxyarp print
psend port quit reset securidfixed
securid send shell skey sleep
speed stopbits term timeout wait

DIP> echo

Usage: echo on|off

DIP>

Throughout the following section, examples that display the DIP > prompt show how to enter a
command in test mode and what output it produces. Examples lacking this prompt should be taken as
script excerpts.

7.4.2.1. The modem commands

dip provides a number of commands that configure your serial line and modem. Some of these are
obvious, such as port, which selects a serial port, and speed, databits, stopbits, and parity, which set the
common line parameters. The modem command selects a modem type. Currently, the only type
supported is HAYES (capitalization required). You have to provide dip with a modem type, or else it will
refuse to execute the dial and reset commands. The reset command sends a reset string to the modem; the
string used depends on the modem type selected. For Hayes-compatible modemes, this string is ATZ.

The flush code can be used to flush out all responses the modem has sent so far. Otherwise, a chat script
following reset might be confused because it reads the OK responses from earlier commands.

140

Chapter 7. Serial Line IP

The init command selects an initialization string to be passed to the modem before dialing. The default
for Hayes modems is “ATEQ QO V1 X1”, which turns on echoing of commands and long result codes,
and selects blind dialing (no checking of dial tone). Modern modems have a good factory default
configuration, so this is a little unnecessary, though it does no harm.

The dial command sends the initialization string to the modem and dials up the remote system. The
default dial command for Hayes modems is ATD.

7.4.2.2. The echo command

The echo command serves as a debugging aid. Calling echo on makes dip echo to the console everything
it sends to the serial device. This can be turned off again by calling echo off.

dip also allows you to leave script mode temporarily and enter terminal mode. In this mode, you can use
dip just like any ordinary terminal program, writing the characters you type to the serial line, reading
data from the serial line, and displaying the characters. To leave this mode, enter Ctrl-].

7.4.2.3. The get command

The get command is dip’s way of setting a variable. The simplest form is to set a variable to a constant,
as we did in cowslip.dip. You may, however, also prompt the user for input by specifying the keyword
ask instead of a value:

DIP> get $local ask
Enter the value for $local: _

A third method is to obtain the value from the remote host. Bizarre as it seems at first, this is very useful
in some cases. Some SLIP servers will not allow you to use your own IP address on the SLIP link, but
will rather assign you one from a pool of addresses whenever you dial in, printing some message that
informs you about the address you have been assigned. If the message looks something like “Your
address: 192.168.5.74”, the following piece of dip code would let you pick up the address:

finish login

wait address: 10
get $locip remote

141

Chapter 7. Serial Line IP

7.4.2.4. The print command

This is the command used to echo text to the console from which dip was started. Any of dip’s variables
may be used in print commands. Here’s an example:

DIP> print Using port $port at speed $speed
Using port ttyS3 at speed 38400

7.4.2.5. Variable names

dip understands only a predefined set of variables. A variable name always begins with a dollar symbol
and must be written in lowercase letters.

The $local and $locip variables contain the local host’s name and IP address. When you store the
canonical hostname in $local, dip will automatically attempt to resolve the hostname to an IP address
and to store it in the $locip variable. A similar but backward process occurs when you assign an IP
address to the $locip variable; dip will attempt to perform a reverse lookup to identify the name of the
host and store it in the $local variable.

The $remote and $rmtip variables operate in the same way for the remote host’s name and address. $mtu
contains the MTU value for the connection.

These five variables are the only ones that may be assigned values directly using the get command. A
number of other variables are set as a result of the configuration commands bearing the same name, but
may be used in print statements; these variables are $modem, $port, and $speed.

$errlvl is the variable through which you can access the result of the last command executed. An error
level of 0 indicates success, while a nonzero value denotes an error.

7.4.2.6. The if and goto commands
The if command is a conditional branch, rather than a full-featured programming if statement. Its syntax
is:

if var op number goto label

The expression must be a simple comparison between one of the variables $Serrlvl, $locip, and $rmtip.
var must be an integer number; the operator op may be one of ==, !=, <, >, <=, and >=.

142

Chapter 7. Serial Line IP

The goto command makes the execution of the script continue at the line following that bearing the
label. A label must be the first word on the line and must be followed immediately by a colon.

7.4.2.7. send, wait, and sleep

These commands help implement simple chat scripts in dip. The send command outputs its arguments to
the serial line. It does not support variables, but understands all C-style backslash character sequences,
such as \n for newline and \b for backspace. The tilde character (~) can be used as an abbreviation for
carriage return/newline.

The wait command takes a word as an argument and will read all input on the serial line until it detects a
sequence of characters that match this word. The word itself may not contain any blanks. Optionally, you
may give wait a timeout value as a second argument; if the expected word is not received within that
many seconds, the command will return with an $errlvl value of 1. This command is used to detect login
and other prompts.

The sleep command may be used to wait for a certain amount of time; for instance, to patiently wait for
any login sequence to complete. Again, the interval is specified in seconds.

7.4.2.8. mode and default

These commands are used to flip the serial line to SLIP mode and configure the interface.

The mode command is the last command executed by dip before going into daemon mode. Unless an
error occurs, the command does not return.

mode takes a protocol name as argument. dip currently recognizes SLIP, CSLIP, SLIP6, CSLIP6, PPP,
and TERM as valid names. The current version of dip does not understand adaptive SLIP, however.

After enabling SLIP mode on the serial line, dip executes ifconfig to configure the interface as a
point-to-point link, and invokes route to set the route to the remote host.

If, in addition, the script executes the default command before mode, dip creates a default route that
points to the SLIP link.

7.5. Running in Server Mode

Setting up your SLIP client was the hard part. Configuring your host to act as a SLIP server is much

143

Chapter 7. Serial Line IP

easier.

There are two ways of configuring a SLIP server. Both ways require that you set up one login account
per SLIP client. Assume you provide SLIP service to Arthur Dent at dent.beta.com. You might create an
account named dent by adding the following line to your passwd file:

dent:*:501:60:Arthur Dent’s SLIP account:/tmp:/usr/sbin/diplogin

Afterwards, you would set dent’s password using the passwd utility.

The dip command can be used in server mode by invoking it as diplogin. Usually diplogin is a link to
dip. Its main configuration file is /etc/diphosts, which is where you specify what IP address a SLIP
user will be assigned when he or she dials in. Alternatively, you can also use the sliplogin command, a
BSD-derived tool featuring a more flexible configuration scheme that lets you execute shell scripts
whenever a host connects and disconnects.

When our SLIP user dent logs in, dip starts up as a server. To find out if he is indeed permitted to use
SLIP, it looks up the username in /etc/diphosts. This file details the access rights and connection
parameter for each SLIP user. The general format for an /etc/diphosts entry looks like:

/etc/diphosts
user:password: rem—addr:loc—addr:netmask: comments:protocol, MTU

#

Each of the fields is described in Table 7-2.
Table 7-2. /etc/diphosts Field Description

cription

144

Chapter 7. Serial Line IP

145

Chapter 7. Serial Line IP

146

Chapter 7. Serial Line IP

147

Chapter 7. Serial Line IP

148

Chapter 7. Serial Line IP

149

Chapter 7. Serial Line IP

0S€.

150

Chapter 7. Serial Line IP

151

Chapter 7. Serial Line IP

152

Chapter 7. Serial Line IP

cription

A sample entry for dent could look like this:

dent::dent.beta.com:vbrew.com:255.255.255.0:Arthur Dent:CSLIP, 296

Our example gives our user dent access to SLIP with no additional password required. He will be
assigned the IP address associated with dent.beta.com with a netmask of 255.255.255. 0. His default
route should be directed to the IP address of vbrew.com, and he will use the CSLIP protocol with an
MTU of 296 bytes.

When dent logs in, diplogin extracts the information on him from the diphosts file. If the second field
contains a value, diplogin will prompt for an “external security password.” The string entered by the user
is encrypted and compared to the password from diphosts. If they do not match, the login attempt is
rejected. If the password field contains the string s/key, and dip was compiled with S/Key support, S/Key
authentication will take place. S/Key authentication is described in the documentation that comes in the
dip source package.

After a successful login, diplogin proceeds by flipping the serial line to CSLIP or SLIP mode, and sets
up the interface and route. This connection remains established until the user disconnects and the modem
drops the line. diplogin then returns the line to normal line discipline and exits.

diplogin requires superuser privilege. If you don’t have dip running setuid root, you should make
diplogin a separate copy of dip instead of a simple link. diplogin can then safely be made setuid without
affecting the status of dip itself.

Notes

1. diplogin must be run as setuid to root, too. See the section at the end of this chapter.

153

Chapter 8. The Point-to-Point Protocol

Like SLIP, PPP is a protocol used to send datagrams across a serial connection; however, it addresses a
couple of the deficiencies of SLIP. First, it can carry a large number of protocols and is thus not limited
to the IP protocol. It provides error detection on the link itself, while SLIP accepts and forwards
corrupted datagrams as long as the corruption does not occur in the header. Equally important, it lets the
communicating sides negotiate options, such as the IP address and the maximum datagram size at startup
time, and provides client authorization. This built-in negotiation allows reliable automation of the
connection establishment, while the authentication removes the need for the clumsy user login accounts
that SLIP requires. For each of these capabilities, PPP has a separate protocol. In this chapter, we briefly
cover these basic building blocks of PPP. This discussion of PPP is far from complete; if you want to
know more about PPP, we urge you to read its RFC specification and the dozen or so companion RFCs."
There is also a comprehensive O’Reilly book on the topic of Using & Managing PPP, by Andrew Sun.

At the very bottom of PPP is the High-Level Data Link Control (HDLC) protocol, which defines the
boundaries around the individual PPP frames and provides a 16-bit checksum.? As opposed to the more
primitive SLIP encapsulation, a PPP frame is capable of holding packets from protocols other than IP,
such as Novell’s IPX or Appletalk. PPP achieves this by adding a protocol field to the basic HDLC frame
that identifies the type of packet carried by the frame.

The Link Control Protocol, (LCP) is used on top of HDLC to negotiate options pertaining to the data
link. For instance, the Maximum Receive Unit (MRU), states the maximum datagram size that one side of
the link agrees to receive.

An important step at the configuration stage of a PPP link is client authorization. Although it is not
mandatory, it is really a must for dialup lines in order to keep out intruders. Usually the called host (the
server) asks the client to authorize itself by proving it knows some secret key. If the caller fails to
produce the correct secret, the connection is terminated. With PPP, authorization works both ways; the
caller may also ask the server to authenticate itself. These authentication procedures are totally
independent of each other. There are two protocols for different types of authorization, which we will
discuss further in this chapter: Password Authentication Protocol (PAP) and Challenge Handshake
Authentication Protocol (CHAP).

Each network protocol that is routed across the data link (like IP and AppleTalk) is configured
dynamically using a corresponding Network Control Protocol (NCP). To send IP datagrams across the
link, both sides running PPP must first negotiate which IP address each of them uses. The control
protocol used for this negotiation is the Internet Protocol Control Protocol (IPCP).

Besides sending standard IP datagrams across the link, PPP also supports Van Jacobson header
compression of IP datagrams. This technique shrinks the headers of TCP packets to as little as three
bytes. It is also used in CSLIP, and is more colloquially referred to as VJ header compression. The use of
compression may be negotiated at startup time through IPCP, as well.

154

Chapter 8. The Point-to-Point Protocol

8.1. PPP on Linux

On Linux, PPP functionality is split into two parts: a kernel component that handles the low-level
protocols (HDLC, IPCP, IPXCP, etc.) and the user space pppd daemon that handles the various
higher-level protocols, such as PAP and CHAP. The current release of the PPP software for Linux
contains the PPP daemon pppd and a program named chat that automates the dialing of the remote
system.

The PPP kernel driver was written by Michael Callahan and reworked by Paul Mackerras. pppd was
derived from a free PPP implementation® for Sun and 386BSD machines that was written by Drew
Perkins and others, and is maintained by Paul Mackerras. It was ported to Linux by Al Longyear. chat
was written by Karl Fox.*

Like SLIP, PPP is implemented by a special line discipline. To use a serial line as a PPP link, you first
establish the connection over your modem as usual, and subsequently convert the line to PPP mode. In
this mode, all incoming data is passed to the PPP driver, which checks the incoming HDLC frames for
validity (each HDLC frame carries a 16-bit checksum), and unwraps and dispatches them. Currently,
PPP is able to transport both the IP protocol, optionally using Van Jacobson header compression, and the
IPX protocol.

pppd aids the kernel driver, performing the initialization and authentication phase that is necessary
before actual network traffic can be sent across the link. pppd ’s behavior may be fine-tuned using a
number of options. As PPP is rather complex, it is impossible to explain all of them in a single chapter.
This book therefore cannot cover all aspects of pppd, but only gives you an introduction. For more
information, consult Using & Managing PPP or the pppd manual pages, and README s in the pppd
source distribution, which should help you sort out most questions this chapter fails to discuss. The
PPP-HOWTO might also be of use.

Probably the greatest help you will find in configuring PPP will come from other users of the same Linux
distribution. PPP configuration questions are very common, so try your local usergroup mailing list or
the IRC Linux channel. If your problems persist even after reading the documentation, you could try the
comp.protocols.ppp newsgroup. This is the place where you can find most of the people involved in
pppd development.

8.2. Running pppd

When you want to connect to the Internet through a PPP link, you have to set up basic networking
capabilities, such as the loopback device and the resolver. Both have been covered in Chapter 5, and
Chapter 6. You can simply configure the name server of your Internet Service Provider in the
/etc/resolv.conf file, but this will mean that every DNS request is sent across your serial link. This
situation is not optimal; the closer (network-wise) you are to your name server, the faster the name
lookups will be. An alternative solution is to configure a caching-only name server at a host on your
network. This means that the first time you make a DNS query for a particular host, your request will be

155

Chapter 8. The Point-to-Point Protocol

sent across your serial link, but every subsequent request will be answered directly by your local name
server, and will be much faster. This configuration is described in Chapter 6, in Section 6.3.4.”

As an introductory example of how to establish a PPP connection with pppd, assume you are at vlager
again. First, dial in to the PPP server c3po and log in to the ppp account. c3po will execute its PPP driver.
After exiting the communications program you used for dialing, execute the following command,
substituting the name of the serial device you used for the ttys3 shown here:

pppd /dev/ttyS3 38400 crtscts defaultroute

This command flips the serial line ttyS3 to the PPP line discipline and negotiates an IP link with c3po.
The transfer speed used on the serial port will be 38,400 bps. The crtscts option turns on hardware
handshake on the port, which is an absolute must at speeds above 9,600 bps.

The first thing pppd does after starting up is negotiate several link characteristics with the remote end
using LCP. Usually, the default set of options pppd tries to negotiate will work, so we won’t go into this
here. Expect to say that part of this negotiation involves requesting or assigning the IP addresses at each
end of the link.

For the time being, we also assume that c3po doesn’t require any authentication from us, so the
configuration phase is completed successfully.

pppd will then negotiate the IP parameters with its peer using IPCP, the IP control protocol. Since we
didn’t specify any particular IP address to pppd earlier, it will try to use the address obtained by having
the resolver look up the local hostname. Both will then announce their addresses to each other.

Usually, there’s nothing wrong with these defaults. Even if your machine is on an Ethernet, you can use
the same IP address for both the Ethernet and the PPP interface. Nevertheless, pppd allows you to use a
different address, or even to ask your peer to use some specific address. These options are discussed later
in the Section 8.5” section.

After going through the IPCP setup phase, pppd will prepare your host’s networking layer to use the
PPP link. It first configures the PPP network interface as a point-to-point link, using ppp0 for the first
PPP link that is active, ppp1 for the second, and so on. Next, it sets up a routing table entry that points to
the host at the other end of the link. In the previous example, pppd made the default network route point
to c3po, because we gave it the defaultroute option.” The default route simplifies your routing by causing
any IP datagram destined to a nonlocal host to be sent to c3po; this makes sense since it is the only way
they can be reached. There are a number of different routing schemes pppd supports, which we will
cover in detail later in this chapter.

156

Chapter 8. The Point-to-Point Protocol

8.3. Using Options Files

Before pppd parses its command-line arguments, it scans several files for default options. These files
may contain any valid command-line arguments spread out across an arbitrary number of lines. Hash
signs introduce comments.

The first options file is /etc/ppp/options, which is always scanned when pppd starts up. Using it to
set some global defaults is a good idea, because it allows you to keep your users from doing several
things that may compromise security. For instance, to make pppd require some kind of authentication
(either PAP or CHAP) from the peer, you add the auth option to this file. This option cannot be
overridden by the user, so it becomes impossible to establish a PPP connection with any system that is
not in your authentication databases. Note, however, that some options can be overridden; the connect
string is a good example.

The other options file, which is read after /etc/ppp/options,is .ppprc in the user’s home directory.
It allows each user to specify her own set of default options.

A sample /etc/ppp/options file might look like this:

Global options for pppd running on vlager.vbrew.com

lock # use UUCP-style device locking
auth # require authentication
usehostname # use local hostname for CHAP
domain vbrew.com # our domain name

The lock keyword makes pppd comply to the standard UUCP method of device locking. With this
convention, each process that accesses a serial device, say /dev/ttyS3, creates a lock file with a name
like LCK. . ttys3 in a special lock-file directory to signal that the device is in use. This is necessary to
prevent signal other programs, such as minicom or uucico, from opening the serial device while it is
used by PPP.

The next three options relate to authentication and, therefore, to system security. The authentication
options are best placed in the global configuration file because they are “privileged” and cannot be
overridden by users’ ~/ .ppprc options files.

8.4. Using chat to Automate Dialing

One of the things that may have struck you as inconvenient in the previous example is that you had to
establish the connection manually before you could fire up pppd. Unlike dip, pppd does not have its
own scripting language for dialing the remote system and logging in, but relies on an external program or

157

Chapter 8. The Point-to-Point Protocol

shell script to do this. The command to be executed can be given to pppd with the connect
command-line option. pppd will redirect the command’s standard input and output to the serial line.

The pppd software package is supplied with a very simple program called chat, which is capable of
being used in this way to automate simple login sequences. We’ll talk about this command in some detail.

If your login sequence is complex, you will need something more powerful than chat. One useful
alternative you might consider is expect, written by Don Libes. It has a very powerful language based on
Tcl, and was designed exactly for this sort of application. Those of you whose login sequence requires,
for example, challenge/response authentication involving calculator-like key generators will find expect
powerful enough to handle the task. Since there are so many possible variations on this theme, we won’t
describe how to develop an appropriate expect script in this book. Suffice it to say, you’d call your expect
script by specifying its name using the pppd connect option. It’s also important to note that when the
script is running, the standard input and output will be attached to the modem, not to the terminal that
invoked pppd. If you require user interaction, you should manage it by opening a spare virtual terminal,
or arrange some other means.

The chat command lets you specify a UUCP-style chat script. Basically, a chat script consists of an
alternating sequence of strings that we expect to receive from the remote system, and the answers we are
to send. We will call them expect and send strings, respectively. This is a typical excerpt from a chat
script:

ogin: blff ssword: s3|<rlt

This script tells chat to wait for the remote system to send the login prompt and return the login name
b1ff. We wait only for ogin: so that it doesn’t matter if the login prompt starts with an uppercase or
lowercase 1, or if it arrives garbled. The following string is another expect string that makes chat wait for
the password prompt and send our response password.

This is basically what chat scripts are all about. A complete script to dial up a PPP server would, of
course, also have to include the appropriate modem commands. Assume that your modem understands
the Hayes command set, and the server’s telephone number is 318714. The complete chat invocation to
establish a connection with c3po would then be:

S chat -v ” ATZ OK ATDT318714 CONNECT ” ogin: ppp word: GaGariN

By definition, the first string must be an expect string, but as the modem won’t say anything before we
have kicked it, we make chat skip the first expect by specifying an empty string. We then send ATZ, the
reset command for Hayes-compatible modems, and wait for its response (OK). The next string sends the
dial command along with the phone number to chat, and expects the CONNECT message in response.
This is followed by an empty string again because we don’t want to send anything now, but rather wait
for the login prompt. The remainder of the chat script works exactly as described previously. This

158

Chapter 8. The Point-to-Point Protocol

description probably looks a bit confusing, but we’ll see in a moment that there is a way to make chat
scripts a lot easier to understand.

The —v option makes chat log all activities to the syslog daemon local2 facility.®

Specifying the chat script on the command line bears a certain risk because users can view a process’s
command line with the ps command. You can avoid this risk by putting the chat script in a file like
dial-c3po. You make chat read the script from the file instead of the command line by giving it the - £
option, followed by the filename. This action has the added benefit of making our chat expect sequences
easier to understand. To convert our example, our dial-c3po file would look like:

" ATZ

OK ATDT318714
CONNECT ”

ogin: PPP

word: GaGariN

When we use a chat script file in this way, the string we expect to receive is on the left and the response
we will send is on the right. They are much easier to read and understand when presented this way.

The complete pppd incantation would now look like this:

pppd connect "chat -f dial-c3po" /dev/ttyS3 38400 —-detach \
crtscts modem defaultroute

Besides the connect option that specifies the dialup script, we have added two more options to the
command line: —detach, which tells pppd not to detach from the console and become a background
process, and the modem keyword, which makes it perform modem-specific actions on the serial device,
like disconnecting the line before and after the call. If you don’t use this keyword, pppd will not monitor
the port’s DCD line and will therefore not detect whether the remote end hangs up unexpectedly.

The examples we have shown are rather simple; chat allows for much more complex scripts. For
instance, it can specify strings on which to abort the chat with an error. Typical abort strings are
messages like BUSY or NO CARRIER that your modem usually generates when the called number is
busy or doesn’t answer. To make chat recognize these messages immediately rather than timing out, you
can specify them at the beginning of the script using the ABORT keyword:

$ chat —v ABORT BUSY ABORT 'NO CARRIER’ ” ATZ OK ...

Similarly, you can change the timeout value for parts of the chat scripts by inserting TIMEOUT options.

159

Chapter 8. The Point-to-Point Protocol

Sometimes you also need to have conditional execution for parts of the chat script: when you don’t
receive the remote end’s login prompt, you might want to send a BREAK or a carriage return. You can
achieve this by appending a subscript to an expect string. The subscript consists of a sequence of send
and expect strings, just like the overall script itself, which are separated by hyphens. The subscript is
executed whenever the expected string it is appended to is not received in time. In the example above, we
would modify the chat script as follows:

ogin:-BREAK-ogin: ppp ssword: GaGariN

When chat doesn’t see the remote system send the login prompt, the subscript is executed by first
sending a BREAK, and then waiting for the login prompt again. If the prompt now appears, the script
continues as usual; otherwise, it will terminate with an error.

8.5. IP Configuration Options

IPCP is used to negotiate a number of IP parameters at link configuration time. Usually, each peer sends
an IPCP Configuration Request packet, indicating which values it wants to change from the defaults and
the new value. Upon receipt, the remote end inspects each option in turn and either acknowledges or
rejects it.

pppd gives you a lot of control over which IPCP options it will try to negotiate. You can tune it through
various command-line options that we will discuss in this section.

8.5.1. Choosing IP Addresses

All IP interfaces require IP addresses assigned to them; a PPP device always has an IP address. The PPP
suite of protocols provides a mechanism that allows the automatic assignment of IP addresses to PPP
interfaces. It is possible for the PPP program at one end of a point-to-point link to assign an IP address
for the remote end to use, or each may use its own.

Some PPP servers that handle a lot of client sites assign addresses dynamically; addresses are assigned to
systems only when calling in and are reclaimed after they have logged off again. This allows the number
of IP addresses required to be limited to the number of dialup lines. While limitation is convenient for
managers of the PPP dialup server, it is often less convenient for users who are dialing in. We discussed
the way that hostnames are mapped to IP addresses by use of a database in Chapter 6. In order for people
to connect to your host, they must know your IP address or the hostname associated with it. If you are a
user of a PPP service that assigns you an IP address dynamically, this knowledge is difficult without
providing some means of allowing the DNS database to be updated after you are assigned an IP address.
Such systems do exist, but we won’t cover them in detail here; instead, we will look at the more
preferable approach, which involves you being able to use the same IP address each time you establish
your network connection.’

160

Chapter 8. The Point-to-Point Protocol

In the previous example, we had pppd dial up c3po and establish an IP link. No provisions were taken to
choose a particular IP address on either end of the link. Instead, we let pppd take its default action. It
attempts to resolve the local hostname, vlager in our example, to an IP address, which it uses for the local
end, while letting the remote machine, c3po, provide its own. PPP supports several alternatives to this
arrangement.

To ask for particular addresses, you generally provide pppd with the following option:

local_addr:remote_addr

local_addr and remote_addr may be specified either in dotted quad notation or as hostnames.® This
option makes pppd attempt to use the first address supplied as its own IP address, and the second as the
peer’s. If the peer rejects either of the addresses during IPCP negotiation, no IP link will be established.’

If you are dialing in to a server and expect it to assign you an IP address, you should ensure that pppd
does not attempt to negotiate one for itself. To do this, use the noipdefault option and leave the
local_addr blank. The noipdefault option will stop pppd from trying to use the IP address
associated with the hostname as the local address.

If you want to set only the local address but accept any address the peer uses, simply leave out the
remote_addr part. To make vlager use the IP address 130.83.4.27 instead of its own, give it
130.83.4.27: on the command line. Similarly, to set the remote address only, leave the 1ocal_addr
field blank. By default, pppd will then use the address associated with your hostname.

8.5.2. Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only. If the remote
host is on a LAN, you certainly want to be able to connect to hosts “behind” your peer as well; in that
case, a network route must be set up.

We have already seen that pppd can be asked to set the default route using the defaultroute option.
This option is very useful if the PPP server you dialed up acts as your Internet gateway.

The reverse case, in which your system acts as a gateway for a single host, is also relatively easy to
accomplish. For example, take some employee at the Virtual Brewery whose home machine is called
oneshot. Let’s also assume that we’ve configured vlager as a dialin PPP server. If we’ve configured
vlager to dynamically assign an IP address that belongs to the Brewery’s subnet, then we can use the
proxyarp option with pppd, which will install a proxy ARP entry for oneshot. This automatically
makes oneshot accessible from all hosts at the Brewery and the Winery.

161

Chapter 8. The Point-to-Point Protocol

However, things aren’t always that simple. Linking two local area networks usually requires adding a
specific network route because these networks may have their own default routes. Besides, having both
peers use the PPP link as the default route would generate a loop, through which packets to unknown
destinations would ping-pong between the peers until their time to live expired.

Suppose the Virtual Brewery opens a branch in another city. The subsidiary runs an Ethernet of its own
using the IP network number 172.16.3.0, which is subnet 3 of the Brewery’s class B network. The
subsidiary wants to connect to the Brewery’s network via PPP to update customer databases. Again,
vlager acts as the gateway for the brewery network and will support the PPP link; its peer at the new
branch is called vbourbon and has an IP address of 172.16.3.1. This network is illustrated in Figure A-2
in Appendix A.

When vbourbon connects to vlager, it makes the default route point to vlager as usual. On vlager,
however, we will have only the point-to-point route to vbourbon and will have to specially configure a
network route for subnet 3 that uses vbourbon as its gateway. We could do this manually using the route
command by hand after the PPP link is established, but this is not a very practical solution. Fortunately,
we can configure the route automatically by using a feature of pppd that we haven’t discussed yet—the
ip-up command. This command is a shell script or program located in /et c/ppp that is executed by
pppd after the PPP interface has been configured. When present, it is invoked with the following
parameters:

ip-up iface device speed local_addr remote_addr

The following table summarizes the meaning of each of the arguments (in the first column, we show the
number used by the shell script to refer to each argument):

ANfumezoee

P SN B =N
—th
=
a

[S < N B = N S
. ©
(@]
(¢]

162

rice

ile

1sed
/dev/tty,
if
stdin/stdout
qre

used)

VN7, — S — NP Y o S S 7 S . S S 7, S WL o
oo
—

Chapter 8. The Point-to-Point Protocol

163

Chapter 8. The Point-to-Point Protocol

164

Chapter 8. The Point-to-Point Protocol

In our case, the ip-up script may contain the following code fragment:'°

#!/bin/sh
case $5 in
172.16.3.1) # this is vbourbon
route add -net 172.16.3.0 gw 172.16.3.1;;

esac
exit O

Similarly, /etc/ppp/ip-down can be used to undo any actions of ip-up after the PPP link has been taken
down again. So in our /etc/ppp/ip-down script we would have a route command that removed the route
we created in the /etc/ppp/ip-up script.

However, the routing scheme is not yet complete. We have set up routing table entries on both PPP hosts,
but so far none of the hosts on either network knows anything about the PPP link. This is not a big
problem if all hosts at the subsidiary have their default route pointing at vbourbon, and all Brewery hosts
route to vlager by default. If this is not the case, your only option is usually to use a routing daemon like
gated. After creating the network route on vlager, the routing daemon broadcasts the new route to all
hosts on the attached subnets.

8.6. Link Control Options

We already encountered the Link Control Protocol (LCP), which is used to negotiate link characteristics
and test the link.

The two most important options negotiated by LCP are the Asynchronous Control Character Map and
the Maximum Receive Unit. There are a number of other LCP configuration options, but they are far too
specialized to discuss here.

The Asynchronous Control Character Map, colloquially called the async map, is used on asynchronous
links, such as telephone lines, to identify control characters that must be escaped (replaced by a specific
two-character sequence) to avoid them being interpreted by equipment used to establish the link. For
instance, you may want to avoid the XON and XOFF characters used for software handshake because a
misconfigured modem might choke upon receipt of an XOFF. Other candidates include Ctrl-1 (the telnet
escape character). PPP allows you to escape any of the characters with ASCII codes 0 through 31 by
specifying them in the async map.

165

Chapter 8. The Point-to-Point Protocol

The async map is a 32-bit-wide bitmap expressed in hexadecimal. The least significant bit corresponds to
the ASCII NULL character, and the most significant bit corresponds to ASCII 31 decimal. These 32
ASCII characters are the control characters. If a bit is set in the bitmap, it signals that the corresponding
character must be escaped before it is transmitted across the link.

To tell your peer that it doesn’t have to escape all control characters, but only a few of them, you can
specify an async map to pppd using the asyncmap option. For example, if only ~s and ~Q (ASCII 17
and 19, commonly used for XON and XOFF) must be escaped, use the following option:

asyncmap 0x000A0000

The conversion is simple as long as you can convert binary to hex. Lay out 32 bits in front of you. The
right-most bit corresponds to ASCII 00 (NULL), and the left-most bit corresponds to ASCII 32 decimal.
Set the bits corresponding to the characters you want escaped to one, and all others to zero. To convert
that into the hexadecimal number pppd expects, simply take each set of 4 bits and convert them into hex.
You should end up with eight hexadecimal figures. String them all together and preprend “0x” to signify
it is a hexadecimal number, and you are done.

Initially, the async map is set to 0x £ £ £ £ f £ £ f—that is, all control characters will be escaped. This is a
safe default, but is usually much more than you need. Each character that appears in the async map
results in two characters being transmitted across the link, so escaping comes at the cost of increased link
utilization and a corresponding performance reduction.

In most circumstances, an async map of 0x0 works fine. No escaping is performed.

The Maximum Receive Unit (MRU), signals to the peer the maximum size of HDLC frames we want to
receive. Although this may remind you of the Maximum Transfer Unit (MTU) value, these two have
little in common. The MTU is a parameter of the kernel networking device and describes the maximum
frame size the interface is able to transmit. The MRU is more of an advice to the remote end not to
generate frames larger than the MRU; the interface must nevertheless be able to receive frames of up to
1,500 bytes.

Choosing an MRU is therefore not so much a question of what the link is capable of transferring, but of
what gives you the best throughput. If you intend to run interactive applications over the link, setting the
MRU to values as low as 296 is a good idea, so that an occasional larger packet (say, from an FTP
session) doesn’t make your cursor “jump.” To tell pppd to request an MRU of 296, you give it the option
mru 296. Small MRUs, however, make sense only if you have VJ header compression (it is enabled by
default), because otherwise you’d waste a large amount of your bandwidth just carrying the IP header for
each datagram.

pppd also understands a couple of LCP options that configure the overall behavior of the negotiation
process, such as the maximum number of configuration requests that may be exchanged before the link is
terminated. Unless you know exactly what you are doing, you should leave these options alone.

166

Chapter 8. The Point-to-Point Protocol

Finally, there are two options that apply to LCP echo messages. PPP defines two messages, Echo Request
and Echo Response. pppd uses this feature to check if a link is still operating. You can enable this by
using the 1cp-echo-interval option together with a time in seconds. If no frames are received from
the remote host within this interval, pppd generates an Echo Request and expects the peer to return an
Echo Response. If the peer does not produce a response, the link is terminated after a certain number of
requests are sent. This number can be set using the 1cp-echo-failure option. By default, this feature
is disabled altogether.

8.7. General Security Considerations

A misconfigured PPP daemon can be a devastating security breach. It can be as bad as letting anyone
plug their machine into your Ethernet (and that can be very bad). In this section, we discuss a few
measures that should make your PPP configuration safe.

Note: Root privilege is required to configure the network device and routing table. You will usually
solve this by running pppd setuid root. However, pppd allows users to set various security-relevant
options.

To protect against any attacks a user may launch by manipulating pppd options, you should set a couple
of default values in the global /etc/ppp/options file, like those shown in the sample file in Section
8.3, earlier in this chapter. Some of them, such as the authentication options, cannot be overridden by
the user, and thus provide reasonable protection against manipulations. An important option to protect is
the connect option. If you intend to allow non-root users to invoke pppd to connect to the Internet, you
should always add the connect and noauth options to the global options file /etc/ppp/options. If
you fail to do this, users will be able to execute arbitrary commands with root privileges by specifying
the command as their connect command on the pppd line or in their personal options file.

Another good idea is to restrict which users may execute pppd by creating a group in /etc/group and
adding only those users who you wish to have the ability to execute the PPP daemon. You should then
change group ownership of the pppd daemon to that group and remove the world execute privileges. To
do this, assuming you’ve called your group dialout, you could use something like:

chown root /usr/sbin/pppd
chgrp dialout /usr/sbin/pppd
chmod 4750 /usr/sbin/pppd

Of course, you have to protect yourself from the systems you speak PPP with, too. To fend off hosts
posing as someone else, you should always require some sort of authentication from your peer.
Additionally, you should not allow foreign hosts to use any IP address they choose, but restrict them to at
most a few. The following section will deal with these topics in detail.

167

Chapter 8. The Point-to-Point Protocol

8.8. Authentication with PPP

With PPP, each system may require its peer to authenticate itself using one of two authentication
protocols: the Password Authentication Protocol (PAP), and the Challenge Handshake Authentication
Protocol (CHAP). When a connection is established, each end can request the other to authenticate itself,
regardless of whether it is the caller or the callee. In the description that follows, we will loosely talk of
“client” and “server” when we want to distinguish between the system sending authentication requests
and the system responding to them. A PPP daemon can ask its peer for authentication by sending yet
another LCP configuration request identifying the desired authentication protocol.

8.8.1. PAP Versus CHAP

PAP, which is offered by many Internet Service Providers, works basically the same way as the normal
login procedure. The client authenticates itself by sending a username and a (optionally encrypted)
password to the server, which the server compares to its secrets database.'" This technique is vulnerable
to eavesdroppers, who may try to obtain the password by listening in on the serial line, and to repeated
trial and error attacks.

CHAP does not have these deficiencies. With CHAP, the server sends a randomly generated “challenge”
string to the client, along with its hostname. The client uses the hostname to look up the appropriate
secret, combines it with the challenge, and encrypts the string using a one-way hashing function. The
result is returned to the server along with the client’s hostname. The server now performs the same
computation, and acknowledges the client if it arrives at the same result.

CHAP also doesn’t require the client to authenticate itself only at startup time, but sends challenges at
regular intervals to make sure the client hasn’t been replaced by an intruder, for instance by switching
phone lines, or because of a modem configuration error that causes the PPP daemon not to notice that the
original phone call has dropped out and someone else has dialed in.

pppd keeps the secret keys for PAP and CHAP in two separate files called /etc/ppp/pap-secrets
and /etc/ppp/chap-secrets. By entering a remote host in one or the other file, you have fine control
over whether PAP or CHAP is used to authenticate yourself with your peer, and vice versa.

By default, pppd doesn’t require authentication from the remote host, but it will agree to authenticate
itself when requested by the remote host. Since CHAP is so much stronger than PAP, pppd tries to use
the former whenever possible. If the peer does not support it, or if pppd can’t find a CHAP secret for the
remote system in its chap-secrets file, it reverts to PAP. If it doesn’t have a PAP secret for its peer
either, it refuses to authenticate altogether. As a consequence, the connection is shut down.

You can modify this behavior in several ways. When given the auth keyword, pppd requires the peer to
authenticate itself. pppd agrees to use either CHAP or PAP as long as it has a secret for the peer in its
CHAP or PAP database. There are other options to turn a particular authentication protocol on or off, but
I won’t describe them here.

168

Chapter 8. The Point-to-Point Protocol

If all systems you talk to with PPP agree to authenticate themselves with you, you should put the auth
option in the global /etc/ppp/options file and define passwords for each system in the
chap-secrets file. If a system doesn’t support CHAP, add an entry for it to the pap-secrets file.
That way, you can make sure no unauthenticated system connects to your host.

The next two sections discuss the two PPP secrets files, pap-secrets and chap-secrets. They are
located in /etc/ppp and contain triplets of clients, servers, and passwords, optionally followed by a list
of IP addresses. The interpretation of the client and server fields is different for CHAP and PAP, and also
depends on whether we authenticate ourselves with the peer, or whether we require the server to
authenticate itself with us.

8.8.2. The CHAP Secrets File

When it has to authenticate itself with a server using CHAP, pppd searches the chap-secrets file for
an entry with the client field equal to the local hostname, and the server field equal to the remote
hostname sent in the CHAP challenge. When requiring the peer to authenticate itself, the roles are simply
reversed: pppd then looks for an entry with the client field equal to the remote hostname (sent in the
client’s CHAP response), and the server field equal to the local hostname.

The following is a sample chap-secrets file for vlager:'

CHAP secrets for vlager.vbrew.com

#

client server secret addrs

,,,
vlager.vbrew.com c3po.lucas.com "Use The Source Luke" vlager.vbrew.com
c3po.lucas.com vlager.vbrew.com "arttoo! arttoo!" c3po.lucas.com

* vlager.vbrew.com "TuXdrinksVicBitter" pub.vbrew.com

When vlager establishes a PPP connection with c3po, c3po asks vlager to authenticate itself by sending a
CHAP challenge. pppd on vlager then scans chap-secrets for an entry with the client field equal to
vlager.vbrew.com and the server field equal to c3po.lucas.com, and finds the first line shown in the
example." It then produces the CHAP response from the challenge string and the secret (Use The
Source Luke), and sends it off to c3po.

pppd also composes a CHAP challenge for c3po containing a unique challenge string and its fully
qualified hostname, vlager.vbrew.com. c3po constructs a CHAP response in the way we discussed, and
returns it to vlager. pppd then extracts the client hostname (c3po.vbrew.com) from the response and
searches the chap-secrets file for a line matching c3po as a client and vlager as the server. The second
line does this, so pppd combines the CHAP challenge and the secret arttoo! arttoo!, encrypts
them, and compares the result to c3po’s CHAP response.

169

Chapter 8. The Point-to-Point Protocol

The optional fourth field lists the IP addresses that are acceptable for the client named in the first field.
The addresses can be given in dotted quad notation or as hostnames that are looked up with the resolver.
For instance, if c3po asks to use an IP address during IPCP negotiation that is not in this list, the request
is rejected, and IPCP is shut down. In the sample file shown above, c3po is therefore limited to using its
own IP address. If the address field is empty, any addresses are allowed; a value of “-~” prevents the use
of IP with that client altogether.

The third line of the sample chap-secrets file allows any host to establish a PPP link with vlager
because a client or server field of » is a wildcard matching any hostname. The only requirements are that
the connecting host must know the secret and that it must use the IP address associated with
pub.vbrew.com. Entries with wildcard hostnames may appear anywhere in the secrets file, since pppd
will always use the best match it can find for the server/client pair.

pppd may need some help forming hostnames. As explained before, the remote hostname is always
provided by the peer in the CHAP challenge or response packet. The local hostname is obtained by
calling the gethostname (2) function by default. If you have set the system name to your unqualified
hostname, you also have to provide pppd with the domain name using the domain option:

pppd ... domain vbrew.com

This provision appends the Brewery’s domain name to vlager for all authentication related activities.
Other options that modify pppd ’s idea of the local hostname are usehostname and name. When you
give the local IP address on the command line using local:remote and local as a name instead of a
dotted quad, pppd uses this as the local hostname.

8.8.3. The PAP Secrets File

The PAP secrets file is very similar to CHAP’s. The first two fields always contain a username and a
server name; the third holds the PAP secret. When the remote host sends its authentication information,
pppd uses the entry that has a server field equal to the local hostname, and a user field equal to the
username sent in the request. When it is necessary for us to send our credentials to the peer, pppd uses
the secret that has a user field equal to the local username and the server field equal to the remote
hostname.

A sample PAP secrets file might look like this:

/etc/ppp/pap-secrets

#

user server secret addrs

vlager—-pap c3po cresspahl vlager.vbrew.com
c3po vlager DonaldGNUth c3po.lucas.com

170

Chapter 8. The Point-to-Point Protocol

The first line is used to authenticate ourselves when talking to c3po. The second line describes how a
user named c3po has to authenticate itself with us.

The name vlager-pap in the first column is the username we send to c3po. By default, pppd picks the
local hostname as the username, but you can also specify a different name by giving the user option
followed by that name.

When picking an entry from the pap-secrets file to identify us to a remote host, pppd must know the
remote host’s name. As it has no way of finding that out, you must specify it on the command line using
the remotename keyword followed by the peer’s hostname. To use the above entry for authentication
with c3po, for example, we must add the following option to pppd ’s command line:

pppd ... remotename c3po user vlager-pap

In the fourth field of the PAP secrets file (and all following fields), you can specify what IP addresses are
allowed for that particular host, just as in the CHAP secrets file. The peer will be allowed to request only
addresses from that list. In the sample file, the entry that c3po will use when it dials in—the line where
c3po is the client—allows it to use its real IP address and no other.

Note that PAP is a rather weak authentication method, you should use CHAP instead whenever possible.
We will therefore not cover PAP in greater detail here; if you are interested in using it, you will find more
PAP features in the pppd (8) manual page.

8.9. Debugging Your PPP Setup

By default, pppd logs any warnings and error messages to syslog ’s daemon facility. You have to add an
entry to syslog.conf that redirects these messages to a file or even the console; otherwise, syslog
simply discards them. The following entry sends all messages to /var/log/ppp-log:

daemon. * /var/log/ppp-log

If your PPP setup doesn’t work right away, you should look in this log file. If the log messages don’t
help, you can also turn on extra debugging output using the debug option. This output makes pppd log
the contents of all control packets sent or received to syslog. All messages then go to the daemon facility.

Finally, the most drastic way to check a problem is to enable kernel-level debugging by invoking pppd
with the kdebug option. It is followed by a numeric argument that is the sum of the following values: 1
for general debug messages, 2 for printing the contents of all incoming HDLC frames, and 4 to make the
driver print all outgoing HDLC frames. To capture kernel debugging messages, you must either run a

171

Chapter 8. The Point-to-Point Protocol

syslogd daemon that reads the /proc/kmsg file, or the klogd daemon. Either of them directs kernel
debugging to the syslog kernel facility.

8.10. More Advanced PPP Configurations

While configuring PPP to dial in to a network like the Internet is the most common application, there are
those of you who have more advanced requirements. In this section we’ll talk about a few of the more
advanced configurations possible with PPP under Linux.

8.10.1. PPP Server

Running pppd as a server is just a matter of configuring a serial tty device to invoke pppd with
appropriate options when an incoming data call has been received. One way to do this is to create a
special account, say ppp, and give it a script or program as a login shell that invokes pppd with these
options. Alternatively, if you intend to support PAP or CHAP authentication, you can use the mgetty
program to support your modem and exploit its “/AutoPPP/” feature.

To build a server using the login method, you add a line similar to the following to your /etc/passwd
file:"

ppp:x:500:200:Public PPP Account:/tmp:/etc/ppp/ppplogin
If your system supports shadow passwords, you also need to add an entry to the /etc/shadow file:

ppp:!:10913:0:99999:7:::

Of course, the UID and GID you use depends on which user you wish to own the connection, and how
you’ve created it. You also have to set the password for the mentioned account using the passwd
command.

The ppplogin script might look like this:

#!/bin/sh

ppplogin - script to fire up pppd on login
mesg n

stty —echo

exec pppd —-detach silent modem crtscts

The mesg command disables other users from writing to the tty by using, for instance, the write
command. The stty command turns off character echoing. This command is necessary; otherwise,

172

Chapter 8. The Point-to-Point Protocol

everything the peer sends would be echoed back to it. The most important pppd option given is —detach
because it prevents pppd from detaching from the controlling tty. If we didn’t specify this option, it
would go to the background, making the shell script exit. This in turn would cause the serial line to hang
up and the connection to be dropped. The silent option causes pppd to wait until it receives a packet
from the calling system before it starts sending. This option prevents transmit timeouts from occurring
when the calling system is slow in firing up its PPP client. The modem option makes pppd drive the
modem control lines of the serial port. You should always turn this option on when using pppd with a
modem. The crtscts option turns on hardware handshake.

Besides these options, you might want to force some sort of authentication, for example, by specifying
auth on pppd ’s command line or in the global options file. The manual page also discusses more
specific options for turning individual authentication protocols on and off.

If you wish to use mgetty, all you need to do is configure mgetty to support the serial device your
modem is connected to (see Section 4.6.1” for details), configure pppd for either PAP or CHAP
authentication with appropriate options in its options file, and finally, add a section similar to the
following to your /etc/mgetty/login.config file:

Configure mgetty to automatically detect incoming PPP calls and invoke
the pppd daemon to handle the connection.

#

/AutoPPP/ - PpPP /usr/sbin/pppd auth -chap +pap login

The first field is a special piece of magic used to detect that an incoming call is a PPP one. You must not
change the case of this string; it is case sensitive. The third column is the username that appears in who
listings when someone has logged in. The rest of the line is the command to invoke. In our example,
we’ve ensured that PAP authentication is required, disabled CHAP, and specified that the system passwd
file should be used for authenticating users. This is probably similar to what you’ll want. Remember, you
can specify the options in the options file or on the command line if you prefer.

Here is a small checklist of tasks to perform and the sequence you should perform them to get PPP dial
in working on your machine. Make sure each step works before moving on to the next:

1. Configure the modem for auto-answer mode. On Hayes-compatible modems, this is performed
using a command like ATS0=3. If you’re going to be using the mgetty daemon, this isn’t necessary.

2. Configure the serial device with a getty type of command to answer incoming calls. A commonly
used getty variant is mgetty.

3. Consider authentication. Will your callers authenticate using PAP, CHAP, or system login?
4. Configure pppd as server as described in this section.

5. Consider routing. Will you need to provide a network route to callers? Routing can be performed
using the ip-up script.

173

Chapter 8. The Point-to-Point Protocol

8.10.2. Demand Dialing

When there is IP traffic to be carried across the link, demand dialing causes your telephone modem to
dial and to establish a connection to a remote host. Demand dialing is most useful when you can’t leave
your telephone line permanently switched to your Internet provider. For example, you might have to pay
timed local calls, so it might be cheaper to have the telephone line switched on only when you need it
and disconnected when you aren’t using the Internet.

Traditional Linux solutions have used the diald command, which worked well but was fairly tricky to
configure. Versions 2.3.0 and later of the PPP daemon have built-in support for demand dialing and make
it very simple to configure. You must use a modern kernel for this to work, too. Any of the later 2.0
kernels will work just fine.

To configure pppd for demand dialing, all you need to do is add options to your options file or the
pppd command line. The following table summarizes the options related to demand dialing:

tiscription

174

ptiscription

Chapter 8. The Point-to-Point Protocol

175

Chapter 8. The Point-to-Point Protocol

ptiscription

dgain
g 176

Chapter 8. The Point-to-Point Protocol

ptiscription

177

ptiscription

Chapter 8. The Point-to-Point Protocol

178

Chapter 8. The Point-to-Point Protocol

A simple demand dialing configuration would therefore look something like this:

demand
holdoff 60
idle 180

This configuration would enable demand dialing, wait 60 seconds before re-establishing a failed
connection, and drop the link if 180 seconds pass without any active data on the link.

8.10.3. Persistent Dialing

Persistent dialing is what people who have permanent dialup connections to a network will want to use.
There is a subtle difference between demand dialing and persistent dialing. With persistent dialing, the
connection is automatically established as soon as the PPP daemon is started, and the persistent aspect
comes into play whenever the telephone call supporting the link fails. Persistent dialing ensures that the
link is always available by automatically rebuilding the connection if it fails.

You might be fortunate to not have to pay for your telephone calls; perhaps they are local and free, or
perhaps they’re paid by your company. The persistent dialing option is extremely useful in this situation.
If you do have to pay for your telephone calls, then you have to be a little careful. If you pay for your
telephone calls on a time-charged basis, persistent dialing is almost certainly not what you want, unless
you’re very sure you’ll be using the connection fairly steadily twenty-four hours a day. If you do pay for
calls, but they are not time charged, you need to be careful to protect yourself against situations that
might cause the modem to endlessly redial. The pppd daemon provides an option that can help reduce
the effects of this problem.

To enable persistent dialing, you must include the persist option in one of your pppd options files.
Including this option alone is all you need to have pppd automatically invoke the command specified by
the connect option to rebuild the connection when the link fails. If you are concerned about the modem
redialing too rapidly (in the case of modem or server fault at the other end of the connection), you can
use the holdoff option to set the minimum amount of time that pppd will wait before attempting to
reconnect. This option won’t solve the problem of a fault costing you money in wasted phone calls, but it
will at least serve to reduce the impact of one.

A typical configuration might have persistent dialing options that look like this:

persist
holdoff 600

The holdoff time is specified in seconds. In our example, pppd waits a full five minutes before redialing

after the call drops out.

It is possible to combine persistent dialing with demand dialing, using idle to drop the link if it has been
idle for a specified period of time. We doubt many users would want to do so, but this scenario is
described briefly in the pppd manual page, if you’d like to pursue it.

179

Notes

11

12.
13.
14.

Chapter 8. The Point-to-Point Protocol

Relevant RFCs are listed in the Bibiliography at the end of this book.

In fact, HDLC is a much more general protocol devised by the International Standards Organization
(ISO) and is also an essential component of the X.25 specification.

If you have any general questions about PPP, ask the people on the Linux-net mailing list at
vger.rutgers.edu.

Karl can be reached at karl @morningstar.com.
The default network route is installed only if none is already present.

If you edit syslog.conf to redirect these log messages to a file, make sure this file isn’t world
readable, as chat also logs the entire chat script by default—including passwords.

More information on two dynamic host assignment mechanisms can be found at
http://www.dynip.com/ and http://www.justlinux.com/dynamic_dns.html.

Using hostnames in this option has consequences for CHAP authentication. Please refer to the
Section 8.8” section later in this chapter.

The ipcp-accept-local and ipcp-accept-remote options instruct your pppd to accept the
local and remote IP addresses being offered by the remote PPP, even if you’ve supplied some in your
configuration. If these options are not configured, your pppd will reject any attempt to negotiate the
IP addresses used.

. If we wanted to have routes for other sites created when they dial in, we’d add appropriate case

statements to cover those in which the . . . appears in the example.

. “Secret” is just the PPP name for passwords. PPP secrets don’t have the same length limitation as

Linux login passwords.
The double quotes are not part of the secret; they merely serve to protect the whitespace within it.
This hostname is taken from the CHAP challenge.

The useradd or adduser utility, if you have it, will simplify this task.

180

Chapter 9. TCP/IP Firewall

Security is increasingly important for companies and individuals alike. The Internet has provided them
with a powerful tool to distribute information about themselves and obtain information from others, but it
has also exposed them to dangers that they have previously been exempt from. Computer crime,
information theft, and malicious damage are all potential dangers.

An unauthorized and unscrupulous person who gains access to a computer system may guess system
passwords or exploit the bugs and idiosyncratic behavior of certain programs to obtain a working
account on that machine. Once they are able to log in to the machine, they may have access to
information that may be damaging, such as commercially sensitive information like marketing plans,
new project details, or customer information databases. Damaging or modifying this type of data can
cause severe setbacks to the company.

The safest way to avoid such widespread damage is to prevent unauthorized people from gaining
network access to the machine. This is where firewalls come in.

Warning

Constructing secure firewalls is an art. It involves a good understanding of
technology, but equally important, it requires an understanding of the philosophy
behind firewall designs. We won’t cover everything you need to know in this book;
we strongly recommend you do some additional research before trusting any
particular firewall design, including any we present here.

There is enough material on firewall configuration and design to fill a whole book, and indeed there are
some good resources that you might like to read to expand your knowledge on the subject. Two of these
are:

Building Internet Firewalls

by D. Chapman and E. Zwicky (O’Reilly). A guide explaining how to design and install firewalls for
Unix, Linux, and Windows NT, and how to configure Internet services to work with the firewalls.

Firewalls and Internet Security

by W. Cheswick and S. Bellovin (Addison Wesley). This book covers the philosophy of firewall
design and implementation.

We will focus on the Linux-specific technical issues in this chapter. Later we will present a sample
firewall configuration that should serve as a useful starting point in your own configuration, but as with
all security-related matters, trust no one. Double check the design, make sure you understand it, and then
modify it to suit your requirements. To be safe, be sure.

181

Chapter 9. TCP/IP Firewall

9.1. Methods of Attack

As a network administrator, it is important that you understand the nature of potential attacks on
computer security. We’ll briefly describe the most important types of attacks so that you can better
understand precisely what the Linux IP firewall will protect you against. You should do some additional
reading to ensure that you are able to protect your network against other types of attacks. Here are some
of the more important methods of attack and ways of protecting yourself against them:

Unauthorized access

This simply means that people who shouldn’t use your computer services are able to connect and
use them. For example, people outside your company might try to connect to your company
accounting machine or to your NFS server.

There are various ways to avoid this attack by carefully specifying who can gain access through
these services. You can prevent network access to all except the intended users.

Exploitation of known weaknesses in programs

Some programs and network services were not originally designed with strong security in mind and
are inherently vulnerable to attack. The BSD remote services (rlogin, rexec, etc.) are an example.

The best way to protect yourself against this type of attack is to disable any vulnerable services or
find alternatives. With Open Source, it is sometimes possible to repair the weaknesses in the
software.

Denial of service

Denial of service attacks cause the service or program to cease functioning or prevent others from
making use of the service or program. These may be performed at the network layer by sending
carefully crafted and malicious datagrams that cause network connections to fail. They may also be
performed at the application layer, where carefully crafted application commands are given to a
program that cause it to become extremely busy or stop functioning.

Preventing suspicious network traffic from reaching your hosts and preventing suspicious program
commands and requests are the best ways of minimizing the risk of a denial of service attack. It’s
useful to know the details of the attack method, so you should educate yourself about each new
attack as it gets publicized.

Spoofing

This type of attack causes a host or application to mimic the actions of another. Typically the
attacker pretends to be an innocent host by following IP addresses in network packets. For example,
a well-documented exploit of the BSD rlogin service can use this method to mimic a TCP
connection from another host by guessing TCP sequence numbers.

182

Chapter 9. TCP/IP Firewall

To protect against this type of attack, verify the authenticity of datagrams and commands. Prevent
datagram routing with invalid source addresses. Introduce unpredictablility into connection control
mechanisms, such as TCP sequence numbers and the allocation of dynamic port addresses.

Eavesdropping

This is the simplest type of attack. A host is configured to "listen" to and capture data not belonging
to it. Carefully written eavesdropping programs can take usernames and passwords from user login
network connections. Broadcast networks like Ethernet are especially vulnerable to this type of
attack.

To protect against this type of threat, avoid use of broadcast network technologies and enforce the
use of data encryption.

IP firewalling is very useful in preventing or reducing unauthorized access, network layer denial of
service, and IP spoofing attacks. It not very useful in avoiding exploitation of weaknesses in network
services or programs and eavesdropping.

9.2. What Is a Firewall?

A firewall is a secure and trusted machine that sits between a private network and a public network.' The
firewall machine is configured with a set of rules that determine which network traffic will be allowed to
pass and which will be blocked or refused. In some large organizations, you may even find a firewall
located inside their corporate network to segregate sensitive areas of the organization from other
employees. Many cases of computer crime occur from within an organization, not just from outside.

Firewalls can be constructed in quite a variety of ways. The most sophisticated arrangement involves a
number of separate machines and is known as a perimeter network. Two machines act as "filters" called
chokes to allow only certain types of network traffic to pass, and between these chokes reside network
servers such as a mail gateway or a World Wide Web proxy server. This configuration can be very safe
and easily allows quite a great range of control over who can connect both from the inside to the outside,
and from the outside to the inside. This sort of configuration might be used by large organizations.

Typically though, firewalls are single machines that serve all of these functions. These are a little less
secure, because if there is some weakness in the firewall machine itself that allows people to gain access
to it, the whole network security has been breached. Nevertheless, these types of firewalls are cheaper
and easier to manage than the more sophisticated arrangement just described. Figure 9-1 illustrates the
two most common firewall configurations.

183

Chapter 9. TCP/IP Firewall

Figure 9-1. The two major classes of firewall design

]

I

el
g
B

rp— I LAN I Irtraret

IP Fiker

m.

!

Sapr

ntemet Intranet

T

IP Fiker and
Application S

The Linux kernel provides a range of built-in features that allow it to function quite nicely as an IP
firewall. The network implementation includes code to do IP filtering in a number of different ways, and
provides a mechanism to quite accurately configure what sort of rules you’d like to put in place. The
Linux firewall is flexible enough to make it very useful in either of the configurations illustrated in Figure
9-1. Linux firewall software provides two other useful features that we’ll discuss in separate chapters: IP
Accounting (Chapter 10) and IP masquerade (Chapter 11).

9.3. What Is IP Filtering?

IP filtering is simply a mechanism that decides which types of IP datagrams will be processed normally
and which will be discarded. By discarded we mean that the datagram is deleted and completely ignored,
as if it had never been received. You can apply many different sorts of criteria to determine which
datagrams you wish to filter; some examples of these are:

+ Protocol type: TCP, UDP, ICMP, etc.
« Socket number (for TCP/UPD)
« Datagram type: SYN/ACK, data, ICMP Echo Request, etc.

+ Datagram source address: where it came from

» Datagram destination address: where it is going to

It is important to understand at this point that IP filtering is a network layer facility. This means it doesn’t
understand anything about the application using the network connections, only about the connections

184

Chapter 9. TCP/IP Firewall

themselves. For example, you may deny users access to your internal network on the default telnet port,
but if you rely on IP filtering alone, you can’t stop them from using the telnet program with a port that
you do allow to pass trhough your firewall. You can prevent this sort of problem by using proxy servers
for each service that you allow across your firewall. The proxy servers understand the application they
were designed to proxy and can therefore prevent abuses, such as using the telnet program to get past a
firewall by using the World Wide Web port. If your firewall supports a World Wide Web proxy, their
telnet connection will always be answered by the proxy and will allow only HTTP requests to pass. A
large number of proxy-server programs exist. Some are free software and many others are commercial
products. The FirewalllHOWTO discusses one popular set of these, but they are beyond the scope of this
book.

The IP filtering ruleset is made up of many combinations of the criteria listed previously. For example,
let’s imagine that you wanted to allow World Wide Web users within the Virtual Brewery network to
have no access to the Internet except to use other sites’ web servers. You would configure your firewall to
allow forwarding of:

- datagrams with a source address on Virtual Brewery network, a destination address of anywhere, and
with a destination port of 80 (WWW)

« datagrams with a destination address of Virtual Brewery network and a source port of 80 (WWW)
from a source address of anywhere

Note that we’ve used two rules here. We have to allow our data to go out, but also the corresponding
reply data to come back in. In practice, as we’ll see shortly, Linux simplifies this and allows us to specify
this in one command.

9.4. Setting Up Linux for Firewalling

To build a Linux IP firewall, it is necessary to have a kernel built with IP firewall support and the
appropriate configuration utility. In all production kernels prior to the 2.2 series, you would use the
ipfwadm utility. The 2.2.x kernels marked the release of the third generation of IP firewall for Linux
called /P Chains. IP chains use a program similar to ipfwadm called ipchains. Linux kernels 2.3.15 and
later support the fourth generation of Linux IP firewall called netfilter. The netfilter code is the result of a
large redesign of the packet handling flow in Linux. The netfilter is a multifaceted creature, providing
direct backward-compatible support for both ipfwadm and ipchains as well as a new alternative
command called iptables. We’ll talk about the differences between the three in the next few sections.

9.4.1. Kernel Configured with IP Firewall

The Linux kernel must be configured to support IP firewalling. There isn’t much more to it than selecting
the appropriate options when performing a make menuconfig of your kernel.> We described how to do

185

Chapter 9. TCP/IP Firewall

this is in Chapter 3”. In 2.2 kernels you should select the following options:

Networking options -———>
[*] Network firewalls
[«] TCP/IP networking
[*] IP: firewalling
]

[*] IP: firewall packet logging

In kernels 2.4.0 and later you should select this option instead:

Networking options --->
[*] Network packet filtering (replaces ipchains)
IP: Netfilter Configuration --->

<M> Userspace queueing via NETLINK (EXPERIMENTAL)
<M> IP tables support (required for filtering/masq/NAT)
<M> limit match support

<M> MAC address match support

<M> netfilter MARK match support

<M> Multiple port match support

<M> TOS match support

<M> Connection state match support

<M> Unclean match support (EXPERIMENTAL)

<M> Owner match support (EXPERIMENTAL)

<M> Packet filtering

<M> REJECT target support

<M> MIRROR target support (EXPERIMENTAL)

<M> Packet mangling

<M> TOS target support

<M> MARK target support

<M> LOG target support

<M> ipchains (2.2-style) support
<M> ipfwadm (2.0-style) support

9.4.2. The ipfwadm Utility

The ipfwadm (IP Firewall Administration) utility is the tool used to build the firewall rules for all
kernels prior to 2.2.0. Its command syntax can be very confusing because it can do such a complicated
range of things, but we’ll provide some common examples that will illustrate the most important
variations of these.

The ipfwadm utility is included in most modern Linux distributions, but perhaps not by default. There
may be a specific software package for it that you have to install. If your distribution does not include it,
you can obtain the source package from ftp.xos.nl in the /pub/linux/ipfwadm/ directory, and
compile it yourself.

186

Chapter 9. TCP/IP Firewall

9.4.3. The ipchains Utility

Just as for the ipfwadm utility, the ipchains utility can be somewhat baffling to use at first. It provides all
of the flexibility of ipfwadm with a simplified command syntax, and additionally provides a “chaining”
mechanism that allows you to manage multiple rulesets and link them together. We’ll cover rule chaining
in a separate section near the end of the chapter, because for most situations it is an advanced concept.

The ipchains command appears in most Linux distributions based on the 2.2 kernels. If you want to
compile it yourself, you can find the source package from its developer’s site at
http:/fwww.rustcorp.com/linux/ipchains/. Included in the source package is a wrapper script called
ipfwadm-wrapper that mimics the ipfwadm command, but actually invokes the ipchains command.
Migration of an existing firewall configuration is much more painless with this addition.

9.4.4. The iptables Utility

The syntax of the iptables utility is quite similar to that of the ipchains syntax. The changes are
improvements and a result of the tool being redesigned to be extensible through shared libraries. Just as
for ipchains, we’ll present iptables equivalents of the examples so you can compare and contrast its
syntax with the others.

The iptables utility is included in the netfilter source package available at
http://www.samba.org/netfilter/. It will also be included in any Linux distribution based on the 2.4 series
kernels.

We’ll talk a bit about netfilter’s huge step forward in a section of its own later in this chapter.

9.5. Three Ways We Can Do Filtering

Consider how a Unix machine, or in fact any machine capable of IP routing, processes IP datagrams. The
basic steps, shown in Figure 9-2 are:

187

Chapter 9. TCP/IP Firewall

Figure 9-2. The stages of IP datagram processing

libwrk Sockets
TCPLDP protocols Cther protocds
==
F routing sdftwane
s)
Ehe=met Driver PPP Criver Ciher Criver

+ The IP datagram is received. (1)
+ The incoming IP datagram is examined to determine if it is destined for a process on this machine.
« If the datagram is for this machine, it is processed locally. (2)

« Ifitis not destined for this machine, a search is made of the routing table for an appropriate route and
the datagram is forwarded to the appropriate interface or dropped if no route can be found. (3)

« Datagrams from local processes are sent to the routing software for forwarding to the appropriate
interface. (4)

« The outgoing IP datagram is examined to determine if there is a valid route for it to take, if not, it is
dropped.

+ The IP datagram is transmitted. (5)

In our diagram, the flow 1—3—5 represents our machine routing data between a host on our Ethernet
network to a host reachable via our PPP link. The flows 1—2 and 4—5 represent the data input and
output flows of a network program running on our local host. The flow 4—3—2 would represent data
flow via a loopback connection. Naturally data flows both into and out of network devices. The question
marks on the diagram represent the points where the IP layer makes routing decisions.

The Linux kernel IP firewall is capable of applying filtering at various stages in this process. That is, you
can filter the IP datagrams that come in to your machine, filter those datagrams being forwarded across
your machine, and filter those datagrams that are ready to be transmitted.

In ipfwadm and ipchains, an Input rule applies to flow 1 on the diagram, a Forwarding rule to flow 3,
and an Output rule to flow 5. We’ll see when we discuss netfilter later that the points of interception have
changed so that an Input rule is applied at flow 2, and an Output rule is applied at flow 4. This has
important implications for how you structure your rulesets, but the general principle holds true for all
versions of Linux firewalling.

188

Chapter 9. TCP/IP Firewall

This may seem unnecessarily complicated at first, but it provides flexibility that allows some very
sophisticated and powerful configurations to be built.

9.6. Original IP Firewall (2.0 Kernels)

The first generation IP firewall support for Linux appeared in the 1.1 series kernel. It was a port of the
BSD ipfw firewall support to Linux by Alan Cox. The firewall support that appeared in the 2.0 series
kernels and is the second generation was enhanced by Jos Vos, Pauline Middelink, and others.

9.6.1. Using ipfwadm

The ipfwadm command was the configuration tool for the second generation Linux IP firewall. Perhaps
the simplest way to describe the use of the ipfwadm command is by example. To begin, let’s code the
example we presented earlier.

9.6.1.1. A naive example

Let’s suppose that we have a network in our organization and that we are using a Linux-based firewall
machine to connect our network to the Internet. Additionally, let’s suppose that we wish the users of that
network to be able to access web servers on the Internet, but to allow no other traffic to be passed.

We will put in place a forwarding rule to allow datagrams with a source address on our network and a
destination socket of port 80 to be forwarded out, and for the corresponding reply datagrams to be
forwarded back via the firewall.

Assume our network has a 24-bit network mask (Class C) and an address of 172.16.1.0. The rules we
might use are:

ipfwadm -F -f

ipfwadm -F -p deny

ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80
ipfwadm -F —-a accept -P tcp -S 0/0 80 -D 172.16.1.0/24

H H H

The -F command-line argument tells ipfwadm that this is a forwarding rule. The first command instructs
ipfwadm to "flush" all of the forwarding rules. This ensures we are working from a known state before
we begin adding specific rules.

The second rule sets our default forwarding policy. We tell the kernel to deny or disallow forwarding of
IP datagrams. It is very important to set the default policy, because this describes what will happen to any
datagrams that are not specifically handled by any other rule. In most firewall configurations, you will

189

Chapter 9. TCP/IP Firewall

want to set your default policy to "deny," as shown, to be sure that only the traffic you specifically allow
past your firewall is forwarded.

The third and fourth rules are the ones that implement our requirement. The third command allows our
datagrams out, and the fourth rule allows the responses back.

Let’s review each of the arguments:

-F

This is a Forwarding rule.

-a accept
Append this rule with the policy set to "accept,” meaning we will forward any datagrams that match
this rule.

-P tcp
This rule applies to tcp datagrams (as opposed to UDP or ICMP).

-S 172.16.1.0/24

The Source address must have the first 24 bits matching those of the network address 172.16.1.0.

-D 0/0 80

The destination address must have zero bits matching the address 0.0.0.0. This is really a shorthand
notation for "anything." The 80 is the destination port, in this case WWW. You may also use any
entry that appears in the /etc/services file to describe the port, so -D 0/0 www would have
worked just as well.

ipfwadm accepts network masks in a form with which you may not be familiar. The /nn notation is a
means of describing how many bits of the supplied address are significant, or the size of the mask. The
bits are always counted from left to right; some common examples are listed in Table 9-1.

Table 9-1. Common Netmask Bit Values

Netmask Bits
255.0.0.0 8
255.255.0.0 16
255.255.255.0 24
255.255.255.128 25
255.255.255.192 26
255.255.255.224 27
255.255.255.240 28
255.255.255.248 29

190

Chapter 9. TCP/IP Firewall

Netmask Bits

255.255.255.252 30

We mentioned earlier that ipfwadm implements a small trick that makes adding these sorts of rules
easier. This trick is an option called -b, which makes the command a bidirectional rule.

The bidirectional flag allows us to collapse our two rules into one as follows:

ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b

9.6.1.2. An important refinement

Take a closer look at our ruleset. Can you see that there is still one method of attack that someone outside
could use to defeat our firewall?

Our ruleset allows all datagrams from outside our network with a source port of 80 to pass. This will
include those datagrams with the SYN bit set! The SYN bit is what declares a TCP datagram to be a
connection request. If a person on the outside had privileged access to a host, they could make a
connection through our firewall to any of our hosts, provided they use port 80 at their end. This is not
what we intended.

Fortunately there is a solution to this problem. The ipfwadm command provides another flag that allows
us to build rules that will match datagrams with the SYN bit set. Let’s change our example to include
such a rule:

ipfwadm -F -a deny -P tcp -S 0/0 80 -D 172.16.10.0/24 -y
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b

The -y flag causes the rule to match only if the SYN flag is set in the datagram. So our new rule says:
"Deny any TCP datagrams destined for our network from anywhere with a source port of 80 and the
SYN bit set,” or "Deny any connection requests from hosts using port 80."

Why have we placed this special rule before the main rule? IP firewall rules operate so that the first
match is the rule that is used. Both rules would match the datagrams we want to stop, so we must be sure
to put the deny rule before the accept rule.

191

Chapter 9. TCP/IP Firewall

9.6.1.3. Listing our rules

After we’ve entered our rules, we ask ipfwadm to list them for us using the command:

ipfwadm -F -1

This command will list all of the configured forwarding rules. The output should look something like
this:

ipfwadm -F -1
IP firewall forward rules, default policy: accept

type prot source destination ports
deny tcp anywhere 172.16.10.0/24 www —> any
acc tcp 172.16.1.0/24 anywhere any —-> www

The ipfwadm command will attempt to translate the port number into a service name using the
/etc/services if an entry exists there.

The default output is lacking in some important detail for us. In the default listing output, we can’t see
the effect of the —y argument. The ipfwadm command is able to produce a more detailed listing output if
you specify the —e (extended output) argument too. We won’t show the whole output here because it is
too wide for the page, but it includes an opt (options) column that shows the —y option controlling SYN
packets:

4 ipfwadm -F -1 -e
P firewall forward rules, default policy: accept
pkts bytes type prot opt tosa tosx ifname ifaddress source
0 0 deny tcp --y- OxFF 0x00 any any anywhere
0 0 acc tecp b--- OxFF 0x00 any any 172.16.1.0/24 ...

9.6.2. A More Complex Example

The previous example was a simple one. Not all network services are as simple as the WWW service to
configure; in practice, a typical firewall configuration would be much more complex. Let’s look at
another common example, this time FTP. We want our internal network users to be able to log into FTP
servers on the Internet to read and write files. But we don’t want people on the Internet to be able to log
into our FTP servers.

We know that FTP uses two TCP ports: port 20 (ftp-data) and port 21 (ftp), so:

ipfwadm -a deny -P tcp -S 0/0 20 -D 172.16.1.0/24 -y
ipfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 20 -b

ipfwadm -a deny -P tcp -S 0/0 21 -D 172.16.1.0/24 -y
ipfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 21 -b

LR S Y

Right? Well, not necessarily. FTP servers can operate in two different modes: passive mode and active
mode.’ In passive mode, the FTP server listens for a connection from the client. In active mode, the
server actually makes the connection to the client. Active mode is usually the default. The differences are
illustrated in Figure 9-3.

192

Chapter 9. TCP/IP Firewall

Figure 9-3. FTP server modes

FTP PCOAT) achive) mode
Pod 222 Rt 21
i_- FTF Canmand
Client Pzt 777

FTP PASY {passive) mode

Part 777 Fart 21
[= FTP Cammand e
| | =
=
- —
| | —
.!—_ | o—
Client Gl —
Pad 777 Fort 3 o

Conmection ragues

Many FTP servers make their data connection from port 20 when operating in active mode, which
simplifies things for us a little, but unfortunately not all do.*

But how does this affect us? Take a look at our rule for port 20, the FTP-data port. The rule as we have it
now assumes that the connection will be made by our client to the server. This will work if we use passive
mode. But it is very difficult for us to configure a satisfactory rule to allow FTP active mode, because we
may not know in advance what ports will be used. If we open up our firewall to allow incoming
connections on any port, we are exposing our network to attack on all services that accept connections.

The dilemna is most safely resolved by insisting that our users operate in passive mode. Most FTP
servers and many FTP clients will operate this way. The popular ncftp client also supports passive mode,
but it may require a small configuration change to make it default to passive mode. Many World Wide
Web browsers such as the Netscape browser also support passive mode FTP, so it shouldn’t be too hard
to find appropriate software to use. Alternatively, you can avoid the issue entirely by using an FTP proxy
server that accepts a connection from the internal network and establishes connections to the outside

network.

In building your firewall, you will probably find a number of these sorts of problems. You should always
give careful thought to how a service actually operates to be sure you have put in place an appropriate
ruleset for it. A real firewall configuration can be quite complex.

193

Chapter 9. TCP/IP Firewall

9.6.3. Summary of ipfwadm Arguments

The ipfwadm has many different arguments that relate to IP firewall configuration. The general syntax is:

ipfwadm category command parameters [options]

Let’s take a look at each of these.

9.6.3.1. Categories

One and only one of the following must be supplied. The category tells the firewall what sort of firewall
rule you are configuring:

-1

Input rule
-0

Output rule
-F

Forwarding rule

9.6.3.2. Commands

At least one of the following must be supplied and applies only to those rules that relate to the supplied
category. The command tells the firewall what action to take.

-a [policy]
Append a new rule

-1 [policy]

Insert a new rule

-d [policy]

Delete an existing rule

-p policy
Set the default policy

194

Chapter 9. TCP/IP Firewall

List all existing rules

Flush all existing rules

The policies relevant to IP firewall and their meanings are:

accept

Allows matching datagrams to be received, forwarded, or transmitted

deny

Blocks matching datagrams from being received, forwarded, or transmitted

reject

Blocks matching datagrams from being received, forwarded, or transmitted, and sends the host that
sent the datagram and ICMP error message

9.6.3.3. Parameters

At least one of the following must be supplied. Use the parameters to specify to which datagrams this
rule applies:

-P protocol

Can be TCP, UDP, ICMP, or all. Example:

-P tcp

-S address[/mask] [port]

Source IP address that this rule will match. A netmask of “/32” will be assumed if you don’t supply
one. You may optionally specify which ports this rule will apply to. You must also specify the
protocol using the —p argument described above for this to work. If you don’t specify a port or port
range, “all” ports will be assumed to match. Ports may be specified by name, using their
/etc/services entry if you wish. In the case of the ICMP protocol, the port field is used to
indicate the ICMP datagram types. Port ranges may be described; use the general syntax:
lowport:highport. Here is an example:

-S 172.29.16.1/24 ftp:ftp-data

195

Chapter 9. TCP/IP Firewall

-D address[/mask] [port]

Specify the destination IP address that this rule will match. The destination address is coded with
the same rules as the source address described previously. Here is an example:

-D 172.29.16.1/24 smtp

-V address

Specify the address of the network interface on which the packet is received (-1) or is being sent
(-0). This allows us to create rules that apply only to certain network interfaces on our machine.
Here is an example:

-V 172.29.16.1

-W name

Specify the name of the network interface. This argument works in the same way as the -v
argument, except you supply the device name instead of its address. Here is an example:

-W ppp0

9.6.3.4. Optional arguments

These arguments are sometimes very useful:

-b

This is used for bidirectional mode. This flag matches traffic flowing in either direction between the
specified source and destination. This saves you from having to create two rules: one for the
forward direction of a connection and one for the reverse.

This enables logging of matching datagrams to the kernel log. Any datagram that matches this rule
will be logged as a kernel message. This is useful to enable you to detect unauthorized access.

This is used to match TCP connect datagrams. The option causes the rule to match only datagrams
that attempt to establish TCP connections. Only datagrams that have their SYN bit set, but their
ACK bit unset, will match. This is useful to filter TCP connection attempts and is ignored for other
protocols.

196

Chapter 9. TCP/IP Firewall

This is used to match TCP acknowledgement datagrams. This option causes the rule to match only
datagrams that are acknowledgements to packets attempting to establish TCP connections. Only
datagrams that have their ACK bit set will match. This is useful to filter TCP connection attempts
and is ignored for all other protocols.

9.6.3.5. ICMP datagram types

Each of the firewall configuration commands allows you to specify ICMP datagram types. Unlike TCP
and UDP ports, there is no convenient configuration file that lists the datagram types and their meanings.
The ICMP datagram types are defined in RFC-1700, the Assigned Numbers RFC. The ICMP datagram
types are also listed in one of the standard C library header files. The
/usr/include/netinet/ip_icmp.h file, which belongs to the GNU standard library package and is
used by C programmers when writing network software that uses the ICMP protocol, also defines the
ICMP datagram types. For your convenience, we’ve listed them in Table 9-2. The iptables command
interface allows you to specify ICMP types by name, so we’ve listed the mnemonics it uses, as well.

Table 9-2. ICMP Datagram Types

Type Number iptables Mhemonic Type Description

0 echo-reply Echo Reply

3 destination-unreachable Destination Unreachable
4 source-quench Source Quench

5 redirect Redirect

8 echo-request Echo Request

11 time-exceeded Time Exceeded

12 parameter-problem Parameter Problem

13 timestamp-request Timestamp Request

14 timestamp-reply Timestamp Reply

15 none Information Request
16 none Information Reply

17 address-mask-request Address Mask Request
18 address-mask-reply Address Mask Reply

9.7. IP Firewall Chains (2.2 Kernels)

Most aspects of Linux are evolving to meet the increasing demands of its users; IP firewall is no
exception. The traditional IP firewall implementation is fine for most applications, but can be clumsy and
inefficient to configure for complex environments. To solve this problem, a new method of configuring

197

Chapter 9. TCP/IP Firewall

IP firewall and related features was developed. This new method was called “IP Firewall Chains” and
was first released for general use in the 2.2.0 Linux kernel.

The IP Firewall Chains support was developed by Paul Russell and Michael Neuling.” Paul has
documented the IP Firewall Chains software in the [IPCHAINS-HOWTO.

IP Firewall Chains allows you to develop classes of firewall rules to which you may then add and remove
hosts or networks. An artifact of firewall rule chaining is that it may improve firewall performance in
configurations in which there are lots of rules.

IP Firewall Chains are supported by the 2.2 series kernels and are also available as a patch against the
2.0.* kernels. The HOWTO describes where to obtain the patch and provides lots of useful hints about
how to effectively use the ipchains configuration utility.

9.7.1. Using ipchains

There are two ways you can use the ipchains utility. The first way is to make use of the
ipfwadm-wrapper shell script, which is mostly a drop-in replacement for ipfwadm that drives the
ipchains program in the background. If you want to do this, then read no further. Instead, reread the
previous sections describing ipfwadm, and substitute ipfwadm-wrapper in its place. This will work, but
there is no guarantee that the script will be maintained, and you will not be taking advantage of any of
the advanced features that the IP Firewall Chains have to offer.

The second way to use ipchains is to learn its new syntax and modify any existing configurations you
have to use the new syntax instead of the old. With some careful consideration, you may find you can
optimize your configuration as you convert. The ipchains syntax is easier to learn than the ipfwadm, so
this is a good option.

The ipfwadm manipulated three rulesets for the purpose of configuring firewalling. With IP Firewall
Chains you can create arbitrary numbers of rulesets, each linked to one another, but there are three
rulesets related to firewalling that are always present. The standard rulesets are direct equivalents of
those used with ipfwadm, except they have names: input, forward and output.

Let’s first look at the general syntax of the ipchains command, then we’ll look at how we’d use ipchains
instead of ipfwadm without worrying about any of the advanced chaining features. We’ll do this by
revisiting our previous examples.

9.7.2. ipchains Command Syntax

The ipchains command syntax is straightforward. We’ll now look at the most important of those. The

198

Chapter 9. TCP/IP Firewall

general syntax of most ipchains commands is:

ipchains command rule-specification options

9.7.2.1. Commands

There are a number of ways we can manipulate rules and rulesets with the ipchains command. Those
relevant to IP firewalling are:

-A chain

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either
source or destination and it resolves to more than one IP address, a rule will be added for each
address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if a hostname is supplied in the
rule specification, a rule will be added for each of the addresses it resolves to.

-D chain

Delete one or more rules from the specified chain that matches the rule specification.

-D chain rulenum

Delete the rule residing at position rulenum in the specified chain. Rule positions start at one for
the first rule in the chain.

-R chain rulenum

Replace the rule residing at position rulenum in the specific chain with the supplied rule
specification.

-C chain

Check the datagram described by the rule specification against the specific chain. This command
will return a message describing how the datagram was processed by the chain. This is very useful
for testing your firewall configuration, and we look at it in detail a little later.

-L [chain]

List the rules of the specified chain, or for all chains if no chain is specified.
-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.
-Z [chain]

Zero the datagram and byte counters for all rules of the specified chain, or for all chains if no chain
is specified.

199

Chapter 9. TCP/IP Firewall

-N chain

Create a new chain with the specified name. A chain of the same name must not already exist. This
is how user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this
command to be successful, there must be no references to the specified chain from any other rules
chain.

-P chain policy
Set the default policy of the specified chain to the specified policy. Valid firewalling policies are
ACCEPT, DENY, REJECT, REDIR, Or RETURN. ACCEPT, DENY, and REJECT have the same meanings
as those for the tradition IP firewall implementation. REDIR specifies that the datagram should be
transparently redirected to a port on the firewall host. The RETURN target causes the IP firewall code
to return to the Firewall Chain that called the one containing this rule and continues starting at the
rule after the calling rule.

9.7.2.2. Rule specification parameters

A number of ipchains parameters create a rule specification by determining what types of packets match.
If any of these parameters is omitted from a rule specification, its default is assumed:

-p [!lprotocol

Specifies the protocol of the datagram that will match this rule. Valid protocol names are tcp, udp,
icmp, or all. You may also specify a protocol number here to match other protocols. For example,
you might use 4 to match the ipip encapsulation protocol. If the ! is supplied, the rule is negated
and the datagram will match any protocol other than the protocol specified. If this parameter isn’t
supplied, it will default to a11.

-s [!]address[/mask] [!] [port]

Specifies the source address and port of the datagram that will match this rule. The address may be
supplied as a hostname, a network name, or an IP address. The optional mask is the netmask to use
and may be supplied either in the traditional form (e.g., /255.255.255.0) or the modern form (e.g.,
/24). The optional port specifies the TCP or UDP port, or the ICMP datagram type that will match.
You may supply a port specification only if you’ve supplied the —p parameter with one of the tcp,
udp, or icmp protocols. Ports may be specified as a range by specifying the upper and lower limits
of the range with a colon as a delimiter. For example, 20:25 described all of the ports numbered
from 20 up to and including 25. Again, the ! character may be used to negate the values.

-d [!]address[/mask] [!] [port]

Specifies the destination address and port of the datagram that will match this rule. The coding of
this parameter is the same as that of the —s parameter.

200

Chapter 9. TCP/IP Firewall

-j target
Specifies the action to take when this rule matches. You can think of this parameter as meaning
“jump to.” Valid targets are ACCEPT, DENY, REJECT, REDIR, and RETURN. We described the
meanings of each of these targets earlier. However, you may also specify the name of a user-defined
chain where processing will continue. If this parameter is omitted, no action is taken on matching
rule datagrams at all other than to update the datagram and byte counters.

-i [!]interface-name

Specifies the interface on which the datagram was received or is to be transmitted. Again, the !
inverts the result of the match. If the interface name ends with +, then any interface that begins with
the supplied string will match. For example, -i ppp+ would match any PPP network device and -1
! eth+ would match all interfaces except Ethernet devices.

['11-f
Specifies that this rule applies to everything but the first fragment of a fragmented datagram.

9.7.2.3. Options

The following ipchains options are more general in nature. Some of them control rather esoteric features
of the IP chains software:

-b
Causes the command to generate two rules. One rule matches the parameters supplied, and the other
rule added matches the corresponding parameters in the reverse direction.

-v

Causes ipchains to be verbose in its output. It will supply more information.

-n

Causes ipchains to display IP address and ports as numbers without attempting to resolve them to
their corresponding names.

Enables kernel logging of matching datagrams. Any datagram that matches the rule will be logged
by the kernel using its printk () function, which is usually handled by the sysklogd program and
written to a log file. This is useful for making unusual datagrams visible.

-o[maxsize]

Causes the IP chains software to copy any datagrams matching the rule to the userspace “netlink”
device. The maxsize argument limits the number of bytes from each datagram that are passed to the
netlink device. This option is of most use to software developers, but may be exploited by software
packages in the future.

201

Chapter 9. TCP/IP Firewall

-m markvalue

Causes matching datagrams to be marked with a value. Mark values are unsigned 32-bit numbers.
In existing implementations this does nothing, but at some point in the future, it may determine how
the datagram is handled by other software such as the routing code. If a markvalue begins with a +
or —, the value is added or subtracted from the existing markvalue.

-t andmask xormask

Enables you to manipulate the “type of service” bits in the IP header of any datagram that matches
this rule. The type of service bits are used by intelligent routers to prioritize datagrams before
forwarding them. The Linux routing software is capable of this sort prioritization. The andmask
and xormask represent bit masks that will be logically ANDed and ORed with the type of service
bits of the datagram respectively. This is an advanced feature that is discussed in more detail in the
IPCHAINS-HOWTO.

Causes any numbers in the ipchains output to be expanded to their exact values with no rounding.

-y
Causes the rule to match any TCP datagram with the SYN bit set and the ACK and FIN bits clear.
This is used to filter TCP connection requests.

9.7.3. Our Naive Example Revisited

Let’s again suppose that we have a network in our organization and that we are using a Linux-based
firewall machine to allow our users access to WWW servers on the Internet, but to allow no other traffic
to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, we’d use the
following ipchains rules:

ipchains -F forward

ipchains -P forward DENY

ipchains -A forward -s 0/0 80 -d 172.16.1.0/24 -p tcp -y -3j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 80 -p tcp -b —-j ACCEPT

o H

The first of the commands flushes all of the rules from the forward rulesets and the second set of
commands sets the default policy of the forward ruleset to DENY. Finally, the third and fourth
commands do the specific filtering we want. The fourth command allows datagrams to and from web
servers on the outside of our network to pass, and the third prevents incoming TCP connections with a
source port of 80.

202

Chapter 9. TCP/IP Firewall

If we now wanted to add rules that allowed passive mode only access to FTP servers in the outside
network, we’d add these rules:

ipchains -A forward -s 0/0 20 -d 172.16.1.0/24 -p tcp -y —-3j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 20 -p tcp -b -3j ACCEPT
ipchains -A forward -s 0/0 21 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 21 -p tcp -b -3j ACCEPT

H= oW H H

9.7.4. Listing Our Rules with ipchains

To list our rules with ipchains, we use its -1 argument. Just as with ipfwadm, there are arguments that
control the amount of detail in the output. In its simplest form, ipchains produces output that looks like:

ipchains -L -n
Chain input (policy ACCEPT) :
Chain forward (policy DENY):

target prot opt source destination ports

DENY tecp -y--—-- 0.0.0.0/0 172.16.1.0/24 80 —> *
ACCEPT tcp - 172.16.1.0/24 0.0.0.0/0 * => 80
ACCEPT tcp —-———- 0.0.0.0/0 172.16.1.0/24 80 —> *
ACCEPT tcp - 172.16.1.0/24 0.0.0.0/0 * => 20
ACCEPT tcp ——-———- 0.0.0.0/0 172.16.1.0/24 20 —> *
ACCEPT tcp - 172.16.1.0/24 0.0.0.0/0 * => 21
ACCEPT tcp —-———- 0.0.0.0/0 172.16.1.0/24 21 —> *

Chain output (policy ACCEPT) :

If you don’t supply the name of a chain to list, ipchains will list all rules in all chains. The —n argument
in our example tells ipchains not to attempt to convert any address or ports into names. The information
presented should be self-explanatory.

A verbose form, invoked by the —u option, provides much more detail. Its output adds fields for the
datagram and byte counters, Type of Service AND and XOR flags, the interface name, the mark, and the
outsize.

All rules created with ipchains have datagram and byte counters associated with them. This is how IP
Accounting is implemented and will be discussed in detail in Chapter 10. By default these counters are
presented in a rounded form using the suffixes K and M to represent units of one thousand and one million,
respectively. If the —-x argument is supplied, the counters are expanded to their full unrounded form.

9.7.5. Making Good Use of Chains

You now know that the ipchains command is a replacement for the ipfwadm with a simpler
command-line syntax and some interesting enhancements, but you’re no doubt wanting to know where

203

Chapter 9. TCP/IP Firewall

you’d use the user-defined chains and why. You’ll also probably want to know how to use the support
scripts that accompany the ipchains command in its software package. We’ll now explore these subjects
and address the questions.

9.7.5.1. User-defined chains

The three rulesets of the traditional IP firewall code provided a mechanism for building firewall
configurations that were fairly simple to understand and manage for small networks with simple
firewalling requirements. When the configuration requirements are not simple, a number of problems
become apparent. Firstly, large networks often require much more than the small number of firewalling
rules we’ve seen so far; inevitably needs arise that require firewalling rules added to cover special case
scenarios. As the number of rules grows, the performance of the firewall deterioriates as more and more
tests are conducted on each datagram and managability becomes an issue. Secondly, it is not possible to
enable and disable sets of rules atomically; instead, you are forced to expose yourself to attack while you
are in the middle of rebuilding your ruleset.

The design of IP Firewall Chains helps to alleviate these problems by allowing the network administrator
to create arbitrary sets of firwewall rules that we can link to the three inbuilt rulesets. We can use the -N
option of ipchains to create a new chain with any name we please of eight characters or less. (Restricting
the name to lowercase letters only is probably a good idea.) The -5 option configures the action to take
when a datagram matches the rule specification. The -5 option specifies that if a datagram matches a
rule, further testing should be performed against a user-defined chain. We’ll illustrate this with a diagram.

Consider the following ipchains commands:

ipchains -P input DENY

ipchains -N tcpin

ipchains -A tcpin -s ! 172.16.0.0/16

ipchains -A tcpin -p tcp -d 172.16.0.0/16 ssh —-j ACCEPT
ipchains -A tcpin -p tcp -d 172.16.0.0/16 www —3J ACCEPT
ipchains -A input -p tcp -Jj tcpin

ipchains -A input -p all

We set the default input chain policy to deny. The second command creates a user-defined chain called
“tcpin.” The third command adds a rule to the tcpin chain that matches any datagram that was sourced
from outside our local network; the rule takes no action. This rule is an accounting rule and will be
discussed in more detail in Chapter 10. The next two rules match any datagram that is destined for our
local network and either of the ssh or www ports; datagrams matching these rules are accepted. The next
rule is when the real ipchains magic begins. It causes the firewall software to check any datagram of
protocol TCP against the tcpin user-defined chain. Lastly, we add a rule to our input chain that matches
any datagram; this is another accounting rule. They will produce the following Firewall Chains shown in
Figure 9-4.

204

Chapter 9. TCP/IP Firewall

Figure 9-4. A simple IP chain ruleset

Input bzpin

—p igmp —j ROCEFT —2 ! 172.15.0.0/1%

— t2p —§ temin —p t2p — L172.16.0.0/15 24h —j AOCEPT
- all —p tep —d L72.15.0.0/16 e —§ AQCERT

Our input and tcpin chains are populated with our rules. Datagram processing always beings at one of
the inbuilt chains. We’ll see how our user-defined chain is called into play by following the processing
path of different types of datagrams.

First, let’s look at what happens when a UDP datagram for one of our hosts is received. Figure 9-5
illustrates the flow through the rules.

Figure 9-5. The sequence of rules tested for a received UDP datagram

Irput | bepin

—p idmg —j ROCERT -4 ! 173.15.0.0/1%

- tep — teEin —p tep —d 172.16.0.0/16 2ah —§ AOCEPT
—F all —F tep ~ L72.16.0.0/16 www —j ACCEFT
CELN

The datagram is received by the input chain and falls through the first two rules because they match
ICMP and TCP protocols, respectively. It matches the third rule in the input chain, but it doesn’t
specify a target, so its datagram and byte counters are updated, but no other action takes place. The
datagram reaches the end of the input chain, meets with the default input chain policy, and is denied.

To see our user-defined chain in operation, let’s now consider what happens when we receive a TCP
datagram destined for the ssh port of one of our hosts. The sequence is shown in Figure 9-6.

205

Chapter 9. TCP/IP Firewall

Figure 9-6. The rules flow for a received TCP datagram for ssh

Inpet | bepin

—p iemp —j ACCEFT -3 ! 172.15.0.071%6
_J T
- tep — tepin—| — tep —d L172.16.0.0/16 24h —§ ACCEFT

- all — tep —d L72.16.0.0/16 swww —j AOCEPT

This time the second rule in the input chain does match and it specifies a target of tcpin, our
user-defined chain. Specifying a user-defined chain as a target causes the datagram to be tested against
the rules in that chain, so the next rule tested is the first rule in the tcpin chain. The first rule matches
any datagram that has a source address outside our local network and specifies no target, so it too is an
accounting rule and testing falls through to the next rule. The second rule in our tcpin chain does match
and specifies a target of ACCEPT. We have arrived at target, so no further firewall processing occurs. The
datagram is accepted.

Finally, let’s look at what happens when we reach the end of a user-defined chain. To see this, we’ll map
the flow for a TCP datagram destined for a port other than the two we are handling specifically, as shown
in Figure 9-7.

Figure 9-7. The rules flow for a received TCP datagram for telnet

Iput | bepin
- icmp !j ACCERT - —2 ! 173.16.0.0/1%6
— t2p —j tepin 4 —p t2p —d 172.16.0.0715 24h —§ ECCEPT
[— all —p kep —d 172.16.0.0/16 e —j RCCEPT
|
GEEMN

The user-defined chains do not have default policies. When all rules in a user-defined chain have been
tested, and none have matched, the firewall code acts as though a RETURN rule were present, so if this
isn’t what you want, you should ensure you supply a rule at the end of the user-defined chain that takes
whatever action you wish. In our example, our testing returns to the rule in the input ruleset
immediately following the one that moved us to our user-defined chain. Eventually we reach the end of
the input chain, which does have a default policy and our datagram is denied.

206

Chapter 9. TCP/IP Firewall

This example is very simple, but illustrates our point. A more practical use of IP chains would be much
more complex. A slightly more sophisticated example is provided in the following list of commands:

#

Set default forwarding policy to REJECT

ipchains -P forward REJECT

#

create our user-defined chains

ipchains -N sshin

ipchains -N sshout

ipchains -N wwwin

ipchains -N wwwout

#

Ensure we reject connections coming the wrong way

ipchains -A wwwin -p tcp -s 172.16.0.0/16 -y —-j REJECT

ipchains -A wwwout -p tcp -d 172.16.0.0/16 -y -3 REJECT

ipchains -A sshin -p tcp -s 172.16.0.0/16 -y —-j REJECT

ipchains -A sshout -p tcp -d 172.16.0.0/16 -y —3 REJECT

#

Ensure that anything reaching the end of a user-defined chain is rejected.
ipchains -A sshin -3j REJECT

ipchains -A sshout -j REJECT

ipchains -A wwwin -3j REJECT

ipchains -A wwwout -j REJECT

#

divert www and ssh services to the relevant user-defined chain
ipchains -A forward -p tcp -d 172.16.0.0/16 ssh -b -j sshin
ipchains -A forward -p tcp -s 172.16.0.0/16 -d 0/0 ssh -b -j sshout
ipchains -A forward -p tcp -d 172.16.0.0/16 www -b —J wwwin
ipchains -A forward -p tcp -s 172.16.0.0/16 -d 0/0 www -b —-j wwwout
#

Insert our rules to match hosts at position two in our user-defined chains.
ipchains -I wwwin 2 -d 172.16.1.2 -b -j ACCEPT

ipchains -I wwwout 2 -s 172.16.1.0/24 -b -j ACCEPT

ipchains -I sshin 2 -d 172.16.1.4 -b -j ACCEPT

ipchains -I sshout 2 -s 172.16.1.4 -b —-3j ACCEPT

ipchains -I sshout 2 -s 172.16.1.6 -b —-3j ACCEPT

#

In this example, we’ve used a selection of user-defined chains both to simplify management of our
firewall configuration and improve the efficiency of our firewall as compared to a solution involving only
the built-in chains.

Our example creates user-defined chains for each of the ssh and www services in each connection
direction. The chain called wwwout is where we place rules for hosts that are allowed to make outgoing
World Wide Web connections, and sshin is where we define rules for hosts to which we want to allow
incoming ssh connections. We’ve assumed that we have a requirement to allow and deny individual hosts
on our network the ability to make or receive ssh and www connections. The simplication occurs because
the user-defined chains allow us to neatly group the rules for the host incoming and outgoing permissions
rather than muddling them all together. The improvement in efficiency occurs because for any particular
datagram, we have reduced the average number of tests required before a target is found. The efficiency
gain increases as we add more hosts. If we hadn’t used user-defined chains, we’d potentially have to
search the whole list of rules to determine what action to take with each and every datagram received.
Even if we assume that each of the rules in our list matches an equal proportion of the total number of
datagrams processed, we’d still be searching half the list on average. User-defined chains allow us to

207

Chapter 9. TCP/IP Firewall

avoid testing large numbers of rules if the datagram being tested doesn’t match the simple rule in the
built-in chain that jumps to them.

9.7.5.2. The ipchains support scripts

The ipchains software package is supplied with three support scripts. The first of these we’ve discussed
briefly already, while the remaining two provide an easy and convenient means of saving and restoring
your firewall configuration.

The ipfwadm-wrapper script emulates the command-line syntax of the ipfwadm command, but drives
the ipchains command to build the firewall rules. This is a convenient way to migrate your existing
firewall configuration to the kernel or an alternative to learning the ipchains syntax. The
ipfwadm-wrapper script behaves differently from the ipfwadm command in two ways: firstly, because
the ipchains command doesn’t support specification of an interface by address, the ipfwadm-wrapper
script accepts an argument of —v but attempts to convert it into the ipchains equivalent of a -w by
searching for the interface name configured with the supplied address. The ipfwadm-wrapper script
will always provide a warning when you use the —v option to remind you of this. Secondly, fragment
accounting rules are not translated correctly.

The ipchains-save and ipchains-restore scripts make building and modifying a firewall configuration
much simpler. The ipchains-save command reads the current firewall configuration and writes a
simplified form to the standard output. The ipchains-restore command reads data in the output format of
the ipchains-save command and configures the IP firewall with these rules. The advantage of using these
scripts over directly modifying your firewall configuration script and testing the configuration is the
ability to dynamically build your configuration once and then save it. You can then restore that
configuration, modify it, and resave it as you please.

To use the scripts, you’d enter something like:

ipchains-save >/var/state/ipchains/firewall.state

to save your current firewall configuration. You’d restore it, perhaps at boot time, with:

ipchains-restore </var/state/ipchains/firewall.state

The ipchains-restore script checks if any user-defined chain listed in its input already exists. If you’ve
supplied the - £ argument, it will automatically flush the rules from the user-defined chain before
configuring those in the input. The default behavior asks you whether to skip this chain or to flush it.

208

Chapter 9. TCP/IP Firewall

9.8. Netfilter and IP Tables (2.4 Kernels)

While developing IP Firewall Chains, Paul Russell decided that IP firewalling should be less difficult; he
soon set about the task of simplifying aspects of datagram processing in the kernel firewalling code and
produced a filtering framework that was both much cleaner and much more flexible. He called this new
framework netfilter.

Note: At the time of preparation of this book the netfilter design had not yet stabilized. We hope
you'll forgive any errors in the description of neffilter or its associated configuration tools that result
from changes that occurred after preparation of this material. We considered the netfilter work
important enough to justify the inclusion of this material, despite parts of it being speculative in
nature. If you're in any doubt, the relevant HOWTO documents will contain the most accurate and
up-to-date information on the detailed issues associated with the netfilter configuration.

So what was wrong with IP chains? They vastly improved the efficiency and management of firewall
rules. But the way they processed datagrams was still complex, especially in conjunction with
firewall-related features like IP masquerade (discussed in Chapter 11) and other forms of address
translation. Part of this complexity existed because IP masquerade and Network Address Translation
were developed independently of the IP firewalling code and integrated later, rather than having been
designed as a true part of the firewall code from the start. If a developer wanted to add yet more features
in the datagram processing sequence, he would have had difficulty finding a place to insert the code and
would have been forced to make changes in the kernel in order to do so.

Still, there were other problems. In particular, the “input” chain described input to the IP networking
layer as a whole. The input chain affected both datagrams to be destined for this host and datagrams to
be routed by this host. This was somewhat counterintuitive because it confused the function of the input
chain with that of the forward chain, which applied only to datagrams to be forwarded, but which always
followed the input chain. If you wanted to treat datagrams for this host differently from datagrams to be
forwarded, it was necessary to build complex rules that excluded one or the other. The same problem
applied to the output chain.

Inevitably some of this complexity spilled over into the system administrator’s job because it was
reflected in the way that rulesets had to be designed. Moreover, any extensions to filtering required direct
modifications to the kernel, because all filtering policies were implemented there and there was no way
of providing a transparent interface into it. netfilter addresses both the complexity and the rigidity of
older solutions by implementing a generic framework in the kernel that streamlines the way datagrams
are processed and provides a capability to extend filtering policy without having to modify the kernel.

Let’s take a look at two of the key changes made. Figure 9-8 illustrates how datagrams are processed in
the IP chains implementation, while Figure 9-9 illustrates how they are processed in the netfilter
implementation. The key differences are the removal of the masquerading function from the core code
and a change in the locations of the input and output chains. To accompany these changes, a new and
extensible configuration tool called iptables was created.

209

Chapter 9. TCP/IP Firewall

In IP chains, the input chain applies to all datagrams received by the host, irrespective of whether they
are destined for the local host or routed to some other host. In netfilter, the input chain applies only to
datagrams destined for the local host, and the forward chain applies only to datagrams destined for
another host. Similarly, in IP chains, the output chain applies to all datagrams leaving the local host,
irrespective of whether the datagram is generated on the local host or routed from some other host. In
netfilter, the output chain applies only to datagrams generated on this host and does not apply to
datagrams being routed from another host. This change alone offers a huge simplification of many
firewall configurations.

Figure 9-8. Datagram processing chain in IP chains

4-|»ma:ha.rn H sanity .:'E; Hl:ie-masq? I
3o

24
routing - forward oUipLE
decidon L ’ chan chan
" Ioca
" procEss

In Figure 9-8, the components labeled “demasq” and “masq” are separate kernel components responsible
for the incoming and outgoing processing of masqueraded datagrams. These have been reimplemented as
netfilter modules.

Consider the case of a configuration for which the default policy for each of the input, forward, and
output chains is deny. In IP chains, six rules would be needed to allow any session through a firewall
host: two each in the input, forward, and output chains (one would cover each forward path and one
would cover each return path). You can imagine how this could easily become extremely complex and
difficult to manage when you want to mix sessions that could be routed and sessions that could connect
to the local host without being routed. IP chains allow you to create chains that would simplify this task a
little, but the design isn’t obvious and requires a certain level of expertise.

In the netfilter implementation with iptables, this complexity disappears completely. For a service to be
routed across the firewall host, but not terminate on the local host, only two rules are required: one each
for the forward and the reverse directions in the forward chain. This is the obvious way to design
firewalling rules, and will serve to simplify the design of firewall configurations immensely.

210

Chapter 9. TCP/IP Firewall

Figure 9-9. Datagram processing chain in netfilter

r Ertf

lzal

The PACKET-FILTERING-HOWTO offers a detailed list of the changes that have been made, so let’s
focus on the more practical aspects here.

9.8.1. Backward Compatability with ipfwadmand ipchains

The remarkable flexibility of Linux netfilter is illustrated by its ability to emulate the ipfwadm and
ipchains interfaces. Emulation makes transition to the new generation of firewall software a little easier.

The two netfilter kernel modules called ipfwadm.o and ipchains.o provide backward compatibility
for ipfwadm and ipchains. You may load only one of these modules at a time, and use one only if the
ip_tables.o module is not loaded. When the appropriate module is loaded, netfilter works exactly like
the former firewall implementation.

netfilter mimics the ipchains interface with the following commands:
rmmod ip_tables

modprobe ipchains
ipchains ...

211

Chapter 9. TCP/IP Firewall

9.8.2. Using iptables

The iptables utility is used to configure netfilter filtering rules. Its syntax borrows heavily from the
ipchains command, but differs in one very significant respect: it is extensible. What this means is that its
functionality can be extended without recompiling it. It manages this trick by using shared libraries.
There are standard extensions and we’ll explore some of them in a moment.

Before you can use the iptables command, you must load the netfilter kernel module that provides
support for it. The easiest way to do this is to use the modprobe command as follows:

modprobe ip_tables

The iptables command is used to configure both IP filtering and Network Address Translation. To
facilitate this, there are two tables of rules called filter and nat. The filter table is assumed if you do not
specify the -t option to override it. Five built-in chains are also provided. The INPUT and FORWARD
chains are available for the £ilter table, the PREROUTING and POSTROUTING chains are available for
the nat table, and the OUTPUT chain is available for both tables. In this chapter we’ll discuss only the
filter table. We’ll look at the nat table in Chapter 11

The general syntax of most iptables commands is:

iptables command rule-specification extensions

Now we’ll take a look at some options in detail, after which we’ll review some examples.

9.8.2.1. Commands

There are a number of ways we can manipulate rules and rulesets with the iptables command. Those
relevant to IP firewalling are:

-A chain

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either a
source or destination and it resolves to more than one IP address, a rule will be added for each
address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if a hostname is supplied in the
rule specification, a rule will be added for each of the addresses to which it resolves.

-D chain

Delete one or more rules from the specified chain matching the rule specification.

212

Chapter 9. TCP/IP Firewall

-D chain rulenum
Delete the rule residing at position rulenum in the specified chain. Rule positions start at 1 for the
first rule in the chain.

-R chain rulenum
Replace the rule residing at position rulenum in the specific chain with the supplied rule
specification.

-C chain

Check the datagram described by the rule specification against the specific chain. This command
will return a message describing how the chain processed the datagram. This is very useful for
testing your firewall configuration and we will look at it in detail later.

-L [chain]

List the rules of the specified chain, or for all chains if no chain is specified.

-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.

-Z [chain]
Zero the datagram and byte counters for all rules of the specified chain, or for all chains if no chain
is specified.

-N chain
Create a new chain with the specified name. A chain of the same name must not already exist. This
is how user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this
command to be successful, there must be no references to the specified chain from any other rules
chain.

-P chain policy

Set the default policy of the specified chain to the specified policy. Valid firewalling policies are
ACCEPT, DROP, QUEUE, and RETURN. ACCEPT allows the datagram to pass. DROP causes the
datagram to be discarded. QUEUE causes the datagram to be passed to userspace for further
processing. The RETURN target causes the IP firewall code to return to the Firewall Chain that called
the one containing this rule, and continue starting at the rule after the calling rule.

9.8.2.2. Rule specification parameters

There are a number of iptables parameters that constitute a rule specification. Wherever a rule
specification is required, each of these parameters must be supplied or their default will be assumed.

213

Chapter 9. TCP/IP Firewall

-p [!Iprotocol

Specifies the protocol of the datagram that will match this rule. Valid protocol names are tcp, udp,
icmp, or a number, if you know the IP protocol number.® For example, you might use 4 to match the
ipip encapsulation protocol. If the ! character is supplied, the rule is negated and the datagram will
match any protocol other than the specified protocol. If this parameter isn’t supplied, it will default
to match all protocols.

-s [!]address[/mask]

Specifies the source address of the datagram that will match this rule. The address may be supplied
as a hostname, a network name, or an IP address. The optional mask is the netmask to use and may
be supplied either in the traditional form (e.g., /255.255.255.0) or in the modern form (e.g., /24).

-d [!]address[/mask]

Specifies the destination address and port of the datagram that will match this rule. The coding of
this parameter is the same as that of the —s parameter.

-j target

Specifies what action to take when this rule matches. You can think of this parameter as meaning
“jump to.” Valid targets are ACCEPT, DROP, QUEUE, and RETURN. We described the meanings of each
of these previously in the "Commands" section. You may also specify the name of a user-defined
chain where processing will continue. You may also supply the name of a target supplied by an
extension. We’ll talk about extensions shortly. If this parameter is omitted, no action is taken on
matching datagrams at all, other than to update the datagram and byte counters of this rule.

-1 [!]interface-name

Specifies the interface on which the datagram was received. Again, the ! inverts the result of the
match. If the interface name ends with “+” then any interface that begins with the supplied string
will match. For example, -i ppp+ would match any PPP network device and -1 ! eth+ would
match all interfaces except ethernet devices.

-0 [!]interface-name

Specifies the interface on which the datagram is to be transmitted. This argument has the same
coding as the —i argument.

[1]-f

Specifies that this rule applies only to the second and later fragments of a fragmented datagram, not
to the first fragment.

9.8.2.3. Options

The following iptables options are more general in nature. Some of them control rather esoteric features
of the netfilter software.

214

Chapter 9. TCP/IP Firewall

-v
causes iptables to be verbose in its output; it will supply more information.

-n
causes iptables to display IP address and ports as numbers without attempting to resolve them to
their corresponding names.

-X

causes any numbers in the iptables output to be expanded to their exact values with no rounding.

- -line-numbers

causes line numbers to be displayed when listing rulesets. The line number will correspond to the
rule’s position within the chain.

9.8.2.4. Extensions

We said earlier that the iptables utility is extensible through optional shared library modules. There are
some standard extensions that provide some of the features ipchains provided. To make use of an
extension, you must specify its name through the -m name argument to iptables. The following list shows
the -m and —-p options that set up the extension’s context, and the options provided by that extension.

9.8.2.4.1. TCP Extensions: used with -m tcp -p tcp

- -sport [!] [port[:port]]

Specifies the port that the datagram source must be using to match this rule. Ports may be specified
as a range by specifying the upper and lower limits of the range using the colon as a delimiter. For
example, 20:25 described all of the ports numbered 20 up to and including 25. Again, the !
character may be used to negate the values.

- -dport [!] [port[:port]]

Specifies the port that the datagram destination must be using to match this rule. The argument is
coded identically to the - —-sport option.

- -tcp-flags [!] mask comp

Specifies that this rule should match when the TCP flags in the datagram match those specified by
mask and comp. mask is a comma-separated list of flags that should be examined when making the
test. comp is a comma-separated list of flags that must be set for the rule to match. Valid flags are:
SYN, ACK, FIN, RST, URG, PSH, ALL or NONE. This is an advanced option: refer to a good
description of the TCP protocol, such as RFC-793, for a description of the meaning and implication
of each of these flags. The ! character negates the rule.

215

Chapter 9. TCP/IP Firewall

['] - -syn
Specifies the rule to match only datagrams with the SYN bit set and the ACK and FIN bits cleared.

Datagrams with these options are used to open TCP connections, and this option can therefore be
used to manage connection requests. This option is shorthand for:

- —tcp-flags SYN,RST,ACK SYN
When you use the negation operator, the rule will match all datagrams that do not have both the syn
and ACK bits set.

9.8.2.4.2. UDP Extensions: used with -m udp -p udp

- -sport [!] [port[:port]]

Specifies the port that the datagram source must be using to match this rule. Ports may be specified
as a range by specifying the upper and lower limits of the range using the colon as a delimiter. For
example, 20: 25 describes all of the ports numbered 20 up to and including 25. Again, the !
character may be used to negate the values.

- -dport [!] [port[:port]]

Specifies the port that the datagram destination must be using to match this rule. The argument is
coded identically to the - —-sport option.

9.8.2.4.3. ICMP Extensions: used with -m icmp -p icmp

- -icmp-type [!] typename

Specifies the ICMP message type that this rule will match. The type may be specified by number or
name. Some valid names are: echo—request, echo-reply, source—quench, time—exceeded,
destination-unreachable, network-unreachable, host-unreachable,

protocol-unreachable, and port-unreachable.

9.8.2.4.4. MAC Extensions: used with -m mac

- -mac-source [!] address

Specifies the host’s Ethernet address that transmitted the datagram that this rule will match. This
only makes sense in a rule in the input or forward chains because we will be transmitting any
datagram that passes the output chain.

9.8.3. Our Naive Example Revisited, Yet Again

To implement our naive example using the netfilter, you could simply load the ipchains.o module and
pretend it is the ipchains version. Instead, we’ll reimplement it using iptables to illustrate how similar it

216

Chapter 9. TCP/IP Firewall

is.

Yet again, let’s suppose that we have a network in our organization and that we are using a Linux-based
firewall machine to allow our users to be able to access WWW servers on the Internet, but to allow no
other traffic to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, then we’d use the
following iptables rules:

modprobe ip_tables
iptables -F FORWARD
iptables -P FORWARD DROP
iptables -A FORWARD -m tcp -p tcp -s 0/0 --sport 80 -d 172.16.1.0/24 /
—--syn —-j DROP
iptables —-A FORWARD -m tcp -p tcp -s 172.16.1.0/24 --sport /
80 -d 0/0 -j ACCEPT
iptables —-A FORWARD -m tcp -p tcp -d 172.16.1.0/24 —--dport 80 -s 0/0 -3j /
ACCEPT

W % % %

In this example the iptables commands are interpreted exactly as the equivalent ipchains commands.
The major exception that the ip_tables.o module must load. Note that iptables doesn’t support the -b
option, so we must supply a rule for each direction.

9.9. TOS Bit Manipulation

The Type Of Service (TOS) bits are a set of four-bit flags in the IP header. When any one of these bit
flags is set, routers may handle the datagram differently than datagrams with no TOS bits set. Each of the
four bits has a different purpose and only one of the TOS bits may be set at any time, so combinations are
not allowed. The bit flags are called Type of Service bits because they enable the application transmitting
the data to tell the network the type of network service it requires.

The classes of network service available are:

Minimum delay

Used when the time it takes for a datagram to travel from the source host to destination host
(latency) is most important. A network provider might, for example, use both optical fiber and
satellite network connections. Data carried across satellite connections has farther to travel and their
latency is generally therefore higher than for terrestrial-based network connections between the
same endpoints. A network provider might choose to ensure that datagrams with this type of service
set are not carried by satellite.

217

Chapter 9. TCP/IP Firewall

Maximum throughput

Used when the volume of data transmitted in any period of time is important. There are many types
of network applications for which latency is not particularly important but the network throughput
is; for example, bulk-file transfers. A network provider might choose to route datagrams with this
type of service set via high-latency, high-bandwidth routes, such as satellite connections.

Maximum reliability

Used when it is important that you have some certainty that the data will arrive at the destination
without retransmission being required. The IP protocol may be carried over any number of
underlying transmission mediums. While SLIP and PPP are adequate datalink protocols, they are
not as reliable as carrying IP over some other network, such as an X.25 network. A network
provider might make an alternate network available, offering high reliability, to carry IP that would
be used if this type of service is selected.

Minimum cost

Used when it is important to minimize the cost of data transmission. Leasing bandwidth on a
satellite for a transpacific crossing is generally less costly than leasing space on a fiber-optical cable
over the same distance, so network providers may choose to provide both and charge differently
depending on which you use. In this scenario, your “minimum cost” type of service bit may cause
your datagrams to be routed via the lower-cost satellite route.

9.9.1. Setting the TOS Bits Using ipfwadm or ipchains

The ipfwadm and ipchains commands deal with the TOS bits in much the same manner. In both cases
you specify a rule that matches the datagrams with particular TOS bits set, and use the -t argument to
specify the change you wish to make.

The changes are specified using two-bit masks. The first of these bit masks is logically ANDed with the
IP options field of the datagram and the second is logically eXclusive-ORd with it. If this sounds
complicated, we’ll give you the recipes required to enable each of the types of service in a moment.

The bit masks are specified using eight-bit hexadecimal values. Both ipfwadm and ipchains use the
same argument syntax:

-t andmask xormask

Fortunately the same mask arguments can be used each time you wish to set a particular type of service,
to save you having to work them out. They are presented with some suggested uses in Table 9-3.

Table 9-3. Suggested Uses for TOS Bitmasks

218

Chapter 9. TCP/IP Firewall

T@NDmask

XORmask

Suggested Use

Mirtimum

0x10 ftp, telnet, ssh
De-
lny

Maxirmum 0x08 ftp-data, www
Through-
put

Viaxirmum 0x04 snmp, dns

Mirtmum 0x02 nntp, smtp
Cost

9.9.2. Setting the TOS Bits Using iptables

The iptables tool allows you to specify rules that capture only datagrams with TOS bits matching some
predetermined value using the -m tos option, and for setting the TOS bits of IP datagrams matching a
rule using the —3 TOS target. You may set TOS bits only on the FORWARD and OUTPUT chains. The
matching and the setting occur quite independently. You can configure all sort of interesting rules. For
example, you can configure a rule that discads all datagrams with certain TOS bit combinations, or a rule
that sets the TOS bits of datagrams only from certain hosts. Most often you will use rules that contain
both matching and setting to perform TOS bit translations, just as you could for ipfwadm or ipchains.

Rather than the complicated two-mask configuration of ipfwadm and ipchains, iptables uses the
simpler approach of plainly specifying what the TOS bits should match, or to what the TOS bits should
be set. Additionally, rather than having to remember and use the hexadecimal value, you may specify the
TOS bits using the more friendly mnemonics listed in the upcoming table.

The general syntax used to match TOS bits looks like:

-m tos —--tos mnemonic [other-args] —J target

219

Chapter 9. TCP/IP Firewall

The general syntax used to set TOS bits looks like:

[other-args] —-7j TOS --set mnemonic

Remember that these would typically be used together, but they can be used quite independently if you
have a configuration that requires it.

Mnemonic Hexadecimal
Normal-Service 0x00
Minimize-Cost 0x02
Maximize-Reliability 0x04
Maximize-Throughput 0x08
Minimize-Delay 0x10

9.10. Testing a Firewall Configuration

After you’ve designed an appropriate firewall configuration, it’s important to validate that it does in fact
do what you want it to do. One way to do this is to use a test host outside your network to attempt to
pierce your firewall: this can be quite clumsy and slow, though, and is limited to testing only those
addresses that you can actually use.

A faster and easier method is available with the Linux firewall implementation. It allows you to manually
generate tests and run them through the firewall configuration just as if you were testing with actual
datagrams. All varieties of the Linux kernel firewall software, ipfwadm, ipchains, and iptables, provide
support for this style of testing. The implementation involves use of the relevant check command.

The general test procedure is as follows:

1. Design and configure your firewall using ipfwadm, ipchains, or iptables.

2. Design a series of tests that will determine whether your firewall is actually working as you intend.
For these tests you may use any source or destination address, so choose some address combinations
that should be accepted and some others that should be dropped. If you’re allowing or disallowing
only certain ranges of addresses, it is a good idea to test addresses on either side of the boundary of
the range—one address just inside the boundary and one address just outside the boundary. This will
help ensure that you have the correct boundaries configured, because it is sometimes easy to specify
netmasks incorrectly in your configuration. If you’re filtering by protocol and port number, your
tests should also check all important combinations of these parameters. For example, if you intend to
accept only TCP under certain circumstances, check that UDP datagrams are dropped.

220

Chapter 9. TCP/IP Firewall

3. Develop ipfwadm, ipchains, or iptables rules to implement each test. It is probably worthwhile to
write all the rules into a script so you can test and re-test easily as you correct mistakes or change
your design. Tests use almost the same syntax as rule specifications, but the arguments take on
slightly differing meanings. For example, the source address argument in a rule specification
specifies the source address that datagrams matching this rule should have. The source address
argument in test syntax, in contrast, specifies the source address of the test datagram that will be
generated. For ipfwadm, you must use the —c option to specify that this command is a test, while for
ipchains and iptables, you must use the —C option. In all cases you must always specify the source
address, destination address, protocol, and interface to be used for the test. Other arguments, such as
port numbers or TOS bit settings, are optional.

4. Execute each test command and note the output. The output of each test will be a single word
indicating the final target of the datagram after running it through the firewall configuration—that is,
where the processing ended. For ipchains and iptables, user-specified chains will be tested in
addition to the built-in ones.

5. Compare the output of each test against the desired result. If there are any discrepancies, you will
need to analyse your ruleset to determine where you’ve made the error. If you’ve written your test
commands into a script file, you can easily rerun the test after correcting any errors in your firewall
configuration. It’s a good practice to flush your rulesets completely and rebuild them from scratch,
rather than to make changes dynamically. This helps ensure that the active configuration you are
testing actually reflects the set of commands in your configuration script.

Let’s take a quick look at what a manual test transcript would look like for our naive example with
ipchains. You will remember that our local network in the example was 172.16.1.0 with a netmask of
255.255.255.0, and we were to allow TCP connections out to web servers on the net. Nothing else was to
pass our forward chain. Start with a transmission that we know should work, a connection from a local
host to a web server outside:

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 80 —-i ethO
accepted

Note the arguments had to be supplied and the way they’ve been used to describe a datagram. The output
of the command indicates that the datagram was accepted for forwarding, which is what we hoped for.

Now try another test, this time with a source address that doesn’t belong to our network. This one should
be denied:

ipchains -C forward -p tcp -s 172.16.2.0 1025 -d 44.136.8.2 80 —-i ethO
denied

Try some more tests, this time with the same details as the first test, but with different protocols. These
should be denied, too:

221

Chapter 9. TCP/IP Firewall

ipchains -C forward -p udp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i ethO
denied

ipchains -C forward -p icmp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i ethO
denied

Try another destination port, again expecting it to be denied:

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 23 -i ethO
denied

You’ll go a long way toward achieving peace of mind if you design a series of exhaustive tests. While
this can sometimes be as difficult as designing the firewall configuration, it’s also the best way of
knowing that your design is providing the security you expect of it.

9.11. A Sample Firewall Configuration

We’ve discussed the fundamentals of firewall configuration. Let’s now look at what a firewall
configuration might actually look like.

The configuration in this example has been designed to be easily extended and customized. We’ve
provided three versions. The first version is implemented using the ipfwadm command (or the
ipfwadm-wrapper script), the second uses ipchains, and the third uses iptables. The example doesn’t
attempt to exploit user-defined chains, but it will show you the similarities and differences between the
old and new firewall configuration tool syntaxes:

#!/bin/bash

FHAFFE A A R
IPFWADM VERSION

This sample configuration is for a single host firewall configuration

with no services supported by the firewall machine itself.

FHAFFHE AR AR R R R R R R R

USER CONFIGURABLE SECTION
The name and location of the ipfwadm utility. Use ipfwadm-wrapper for
2.2.x kernels.

IPFWADM=ipfwadm

The path to the ipfwadm executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"

OURBCAST="172.29.16.255"

OURDEV="ethO"

The outside address and the network device that supports it.

222

Chapter 9. TCP/IP Firewall

ANYADDR="0/0"
ANYDEV="ethl"

The TCP services we wish to allow to pass - "" empty means all ports
note: space separated

TCPIN="smtp www"

TCPOUT="smtp www ftp ftp-data irc"

The UDP services we wish to allow to pass - "" empty means all ports
note: space separated

UDPIN="domain"

UDPOUT="domain"

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers

note: space separated

ICMPIN="0 3 11"

ICMPOUT="8 3 11"

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall.
LOGGING=1

END USER CONFIGURABLE SECTION

FHEHH AR AR AR AR AR A A A R R R R R R
Flush the Incoming table rules

SIPFWADM -I -f

We want to deny incoming access by default.
SIPFWADM -I -p deny

SPOOFING

We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.

$IPFWADM -I -a deny -S $OURNET -W $ANYDEV

SMURF
Disallow ICMP to our broadcast address to prevent "Smurf" style attack.
SIPFWADM -I -a deny -P icmp -W $ANYDEV -D $OURBCAST

TCP

We will accept all TCP datagrams belonging to an existing connection

(i.e. having the ACK bit set) for the TCP ports we’re allowing through.
This should catch more than 95 % of all valid TCP packets.

SIPFWADM -I -a accept -P tcp -D $OURNET S$TCPIN -k -b

TCP - INCOMING CONNECTIONS

We will accept connection requests from the outside only on the
allowed TCP ports.

SIPFWADM -I -a accept -P tcp -W S$ANYDEV -D $OURNET S$TCPIN -y

TCP — OUTGOING CONNECTIONS
We accept all outgoing tcp connection requests on allowed TCP ports.
SIPFWADM -I -a accept -P tcp -W $OURDEV -D S$ANYADDR $TCPOUT -y

UDP - INCOMING
We will allow UDP datagrams in on the allowed ports.
SIPFWADM -I -a accept -P udp -W S$ANYDEV -D $OURNET S$UDPIN

UDP - OUTGOING

We will allow UDP datagrams out on the allowed ports.
SIPFWADM -I -a accept -P udp -W $SOURDEV -D $ANYADDR $UDPOUT

223

Chapter 9. TCP/IP Firewall

ICMP - INCOMING
We will allow ICMP datagrams in of the allowed types.
SIPFWADM -I -a accept -P icmp -W $ANYDEV -D S$OURNET $UDPIN

ICMP - OUTGOING
We will allow ICMP datagrams out of the allowed types.
SIPFWADM -I -a accept -P icmp -W $OURDEV -D $ANYADDR $UDPOUT

DEFAULT and LOGGING

All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you’ve
configured the LOGGING variable above.

#

if ["SLOGGING"]

then

Log barred TCP
SIPFWADM -I -a reject -P tcp -o

Log barred UDP
SIPFWADM -I -a reject -P udp -o

Log barred ICMP

SIPFWADM -I -a reject -P icmp -o
fi
#
end.

Now we’ll reimplement it using the ipchains command:

#!/bin/bash

FHEHHH AR AR AR AR AR A R R R R
IPCHAINS VERSION

This sample configuration is for a single host firewall configuration

with no services supported by the firewall machine itself.
liiddddddddddddddtdddtddddtddstsddddddttdddtddddtdddtddddpdddtdddtpddnmadii

USER CONFIGURABLE SECTION

The name and location of the ipchains utility.
IPCHAINS=ipchains

The path to the ipchains executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"

OURBCAST="172.29.16.255"

OURDEV="ethO"

The outside address and the network device that supports it.
ANYADDR="0/0"
ANYDEV="ethl"

The TCP services we wish to allow to pass - "" empty means all ports
note: space separated

TCPIN="smtp www"

TCPOUT="smtp www ftp ftp-data irc"

The UDP services we wish to allow to pass - "" empty means all ports
note: space separated

UDPIN="domain"

UDPOUT="domain"

224

Chapter 9. TCP/IP Firewall

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers

note: space separated

ICMPIN="0 3 11"

ICMPOUT="8 3 11"

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall.
LOGGING=1

=+

END USER CONFIGURABLE SECTION
B i
Flush the Input table rules

$IPCHAINS -F input

We want to deny incoming access by default.
$IPCHAINS -P input deny

SPOOFING

We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.

$IPCHAINS -A input -s $OURNET -i S$ANYDEV -3j deny

SMURF
Disallow ICMP to our broadcast address to prevent "Smurf" style attack.
SIPCHAINS -A input -p icmp -w SANYDEV -d $OURBCAST -3 deny

We should accept fragments, in ipchains we must do this explicitly.
$IPCHAINS -A input -f -j accept

TCP

We will accept all TCP datagrams belonging to an existing connection

(i.e. having the ACK bit set) for the TCP ports we’re allowing through.
This should catch more than 95 % of all valid TCP packets.

$IPCHAINS -A input -p tcp -d $OURNET $TCPIN ! -y -b -j accept

TCP - INCOMING CONNECTIONS

We will accept connection requests from the outside only on the

allowed TCP ports.

$IPCHAINS -A input -p tcp -i $ANYDEV -d SOURNET S$TCPIN -y -J accept

TCP - OUTGOING CONNECTIONS
We accept all outgoing TCP connection requests on allowed TCP ports.
$IPCHAINS -A input -p tcp -i $OURDEV -d S$ANYADDR $TCPOUT -y -3 accept

UDP - INCOMING
We will allow UDP datagrams in on the allowed ports.
$IPCHAINS -A input -p udp -i $ANYDEV -d $OURNET $UDPIN -j accept

UDP - OUTGOING
We will allow UDP datagrams out on the allowed ports.
$IPCHAINS -A input -p udp -i $OURDEV -d $ANYADDR $UDPOUT -3j accept

ICMP - INCOMING

We will allow ICMP datagrams in of the allowed types.

$IPCHAINS -A input -p icmp -w $ANYDEV -d S$OURNET $UDPIN -3 accept
ICMP - OUTGOING

We will allow ICMP datagrams out of the allowed types.

S$IPCHAINS -A input -p icmp -i $OURDEV -d S$ANYADDR $UDPOUT -3j accept

DEFAULT and LOGGING

225

Chapter 9. TCP/IP Firewall

All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you’ve
configured the LOGGING variable above.

#

if ["S$LOGGING"]
then

Log barred TCP

SIPCHAINS -A input -p tcp -1 —-3J reject

Log barred UDP
$IPCHAINS -A input -p udp -1 -j reject

Log barred ICMP

SIPCHAINS -A input -p icmp -1 -J reject
fi
#
end.

In our iptables example, we’ve switched to using the FORWARD ruleset because of the difference in
meaning of the INPUT ruleset in the netfilter implementation. This has implications for us; it means that
none of the rules protect the firewall host itself. To accurately mimic our ipchains example, we would
replicate each of our rules in the INPUT chain. For clarity, we’ve dropped all incoming datagrams
received from our outside interface instead.

#!/bin/bash

FHEFHE AR AR R R R R R R R R
IPTABLES VERSION

This sample configuration is for a single host firewall configuration

with no services supported by the firewall machine itself.
iidsddssisdsssasiaisssasssiasiadatisdsssasisdsasassasssisssssasisssssassssi

USER CONFIGURABLE SECTION

The name and location of the ipchains utility.
IPTABLES=iptables

The path to the ipchains executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"

OURBCAST="172.29.16.255"

OURDEV="ethO"

The outside address and the network device that supports it.
ANYADDR="0/0"

ANYDEV="ethl"

The TCP services we wish to allow to pass - ""
note: comma separated

TCPIN="smtp, www"
TCPOUT="smtp, www, ftp, ftp-data, irc"

empty means all ports

The UDP services we wish to allow to pass - "" empty means all ports
note: comma separated

UDPIN="domain"

UDPOUT="domain"

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers

note: comma separated

ICMPIN="0,3,11"

ICMPOUT="8,3,11"

*

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall
LOGGING=1

4

END USER CONFIGURABLE SECTION
FHEHEHEF AR R R R R R R R R R R
Flush the Input table rules

226

SIPTABLES -F FORWARD

We want to deny incoming access by default.
SIPTABLES -P FORWARD deny

Drop all datagrams destined for this host received from outside.
$IPTABLES -A INPUT -i $ANYDEV -7j DROP

SPOOFING

We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.

SIPTABLES -A FORWARD -s $SOURNET -i S$ANYDEV -j DROP

SMURF

Disallow ICMP to our broadcast address to prevent "Smurf" style attack.

SIPTABLES -A FORWARD -m multiport -p icmp -i $ANYDEV -d $OURNET -j DENY

We should accept fragments, in iptables we must do this explicitly.
$IPTABLES -A FORWARD -f -3j ACCEPT

TCP
We will accept all TCP datagrams belonging to an existing connection

(i.e. having the ACK bit set) for the TCP ports we’re allowing through.

This should catch more than 95 % of all valid TCP packets.

$IPTABLES —-A FORWARD -m multiport -p tcp -d SOURNET --dports S$STCPIN /
! ——tcp-flags SYN,ACK ACK -j ACCEPT

S$IPTABLES -A FORWARD -m multiport -p tcp -s $OURNET --sports $TCPIN /
! ——tcp-flags SYN,ACK ACK -j ACCEPT

TCP — INCOMING CONNECTIONS

We will accept connection requests from the outside only on the

allowed TCP ports.

SIPTABLES -A FORWARD -m multiport -p tcp -i $ANYDEV -d $OURNET S$TCPIN /
——syn -3j ACCEPT

TCP - OUTGOING CONNECTIONS

We will accept all outgoing tcp connection requests on the allowed /
TCP ports.

SIPTABLES —-A FORWARD -m multiport -p tcp -i $OURDEV -d S$ANYADDR /
--dports $TCPOUT --syn -Jj ACCEPT

UDP - INCOMING

We will allow UDP datagrams in on the allowed ports and back.

SIPTABLES -A FORWARD -m multiport -p udp -i $ANYDEV -d S$OURNET /
——dports $UDPIN -3j ACCEPT

$TPTABLES -A FORWARD -m multiport -p udp -i $ANYDEV -s S$SOURNET /
——sports $UDPIN —3j ACCEPT

UDP - OUTGOING

We will allow UDP datagrams out to the allowed ports and back.

SIPTABLES -A FORWARD -m multiport -p udp -i $OURDEV -d S$ANYADDR /
—-dports $UDPOUT -j ACCEPT

SIPTABLES -A FORWARD -m multiport -p udp -i $OURDEV -s S$ANYADDR /
—-sports $UDPOUT -j ACCEPT

ICMP — INCOMING

We will allow ICMP datagrams in of the allowed types.

SIPTABLES -A FORWARD -m multiport -p icmp -i $ANYDEV -d $OURNET /
—-dports $ICMPIN -j ACCEPT

ICMP - OUTGOING

We will allow ICMP datagrams out of the allowed types.

$SIPTABLES -A FORWARD -m multiport -p icmp -i $OURDEV -d $ANYADDR /
——dports $ICMPOUT -3j ACCEPT

DEFAULT and LOGGING

All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you’ve
configured the LOGGING variable above.

#

if ["SLOGGING"]

then

Log barred TCP

$IPTABLES -A FORWARD -m tcp -p tcp —-3j LOG
Log barred UDP

SIPTABLES —A FORWARD -m udp -p udp -3 LOG
Log barred ICMP

SIPTABLES —A FORWARD -m udp -p icmp —j LOG
fi

#
end.

Chapter 9. TCP/IP Firewall

227

Chapter 9. TCP/IP Firewall

In many simple situations, to use the sample all you have to do is edit the top section of the file labeled
“USER CONFIGURABLE section” to specify which protocols and datagrams type you wish to allow in
and out. For more complex configurations, you will need to edit the section at the bottom, as well.
Remember, this is a simple example, so scrutinize it very carefully to ensure it does what you want while
implementing it.

Notes

1. The term firewall comes from a device used to protect people from fire. The firewall is a shield of
material resistant to fire that is placed between a potential fire and the people it is protecting.

2. Firewall packet logging is a special feature that writes a line of information about each datagram that
matches a particular firewall rule out to a special device so you can see them.

3. FTP active mode is somewhat nonintuitively enabled using the PORT command. FTP passive mode
is enabled using the PASV command.

4. The ProFTPd daemon is a good example of an FTP server that doesn’t, at least in older versions.
5. Paul can be reached at Paul.Russell @rustcorp.com.au.

6. Take alook at /etc/protocols for protocol names and numbers.

228

Chapter 10. IP Accounting

In today’s world of commercial Internet service, it is becoming increasingly important to know how
much data you are transmitting and receiving on your network connections. If you are an Internet Service
Provider and you charge your customers by volume, this will be essential to your business. If you are a
customer of an Internet Service Provider that charges by data volume, you will find it useful to collect
your own data to ensure the accuracy of your Internet charges.

There are other uses for network accounting that have nothing to do with dollars and bills. If you manage
a server that offers a number of different types of network services, it might be useful to you to know
exactly how much data is being generated by each one. This sort of information could assist you in
making decisions, such as what hardware to buy or how many servers to run.

The Linux kernel provides a facility that allows you to collect all sorts of useful information about the
network traffic it sees. This facility is called IP accounting.

10.1. Configuring the Kernel for IP Accounting

The Linux IP accounting feature is very closely related to the Linux firewall software. The places you
want to collect accounting data are the same places that you would be interested in performing firewall
filtering: into and out of a network host, and in the software that does the routing of datagrams. If you
haven’t read the section on firewalls, now is probably a good time to do so, as we will be using some of
the concepts described in Chapter 9.

To activate the Linux IP accounting feature, you should first see if your Linux kernel is configured for it.
Check to see if the /proc/net/ip_acct file exists. If it does, your kernel already supports IP
accounting. If it doesn’t, you must build a new kernel, ensuring that you answer “Y” to the options in 2.0
and 2.2 series kernels:

Networking options —--->
[*] Network firewalls
[*] TCP/IP networking
[*] IP: accounting

or in 2.4 series kernels:

Networking options -—-—->
[«] Network packet filtering (replaces ipchains)

229

Chapter 10. IP Accounting

10.2. Configuring IP Accounting

Because IP accounting is closely related to IP firewall, the same tool was designated to configure it, so
ipfwadm, ipchains or iptables are used to configure IP accounting. The command syntax is very similar
to that of the firewall rules, so we won’t focus on it, but we will discuss what you can discover about the
nature of your network traffic using this feature.

The general syntax for IP accounting with ipfwadm is:

ipfwadm -A [direction] [command] [parameters]

The direction argument is new. This is simply coded as in, out, or both. These directions are from the
perspective of the linux machine itself, so in means data coming into the machine from a network
connection and out means data that is being transmitted by this host on a network connection. The both
direction is the sum of both the incoming and outgoing directions.

The general command syntax for ipchains and iptables is:

ipchains -A chain rule-specification

iptables —A chain rule-specification

The ipchains and iptables commands allow you to specify direction in a manner more consistent with
the firewall rules. IP Firewall Chains doesn’t allow you to configure a rule that aggregates both
directions, but it does allow you to configure rules in the forward chain that the older implementation
did not. We’ll see the difference that makes in some examples a little later.

The commands are much the same as firewall rules, except that the policy rules do not apply here. We
can add, insert, delete, and list accounting rules. In the case of ipchains and iptables, all valid rules are
accounting rules, and any command that doesn’t specify the -j option performs accounting only.

The rule specification parameters for IP accounting are the same as those used for IP firewall. These are
what we use to define precisely what network traffic we wish to count and total.

10.2.1. Accounting by Address
Let’s work with an example to illustrate how we’d use IP accounting.

Imagine we have a Linux-based router that serves two departments at the Virtual Brewery. The router has
two Ethernet devices, eth0 and eth1, each of which services a department; and a PPP device, ppp0,

230

Chapter 10. IP Accounting

that connects us via a high-speed serial link to the main campus of the Groucho Marx University.

Let’s also imagine that for billing purposes we want to know the total traffic generated by each of the
departments across the serial link, and for management purposes we want to know the total traffic
generated between the two departments.

The following table shows the interface addresses we will use in our example:

iface address netmask
eth0 172.16.3.0 255.255.255.0
ethl 172.16.4.0 255.255.255.0

To answer the question, “How much data does each department generate on the PPP link?”, we could use
a rule that looks like this:

ipfwadm -A both -a -W ppp0 -S 172.16.3.0/24 -b
ipfwadm -A both -a -W ppp0 -S 172.16.4.0/24 -b

or:

ipchains -A input -i ppp0 -d 172.16.3.0/24

ipchains -A output -i ppp0 -s 172.16.3.0/24
ipchains -A input -i ppp0O -d 172.16.4.0/24

ipchains -A output -i ppp0 -s 172.16.4.0/24
and with iptables:

iptables -A FORWARD -i pppO -d 172.16.3.0/24
iptables —-A FORWARD -o ppp0 -s 172.16.3.0/24
iptables -A FORWARD -i pppO -d 172.16.4.0/24
iptables —-A FORWARD -o ppp0 -s 172.16.4.0/24

The first half of each of these set of rules say, “Count all data traveling in either direction across the
interface named ppp0 with a source or destination (remember the function of the -b flag in ipfwadm and
iptables) address of 172.16.3.0/24.” The second half of each ruleset is the same, but for the second
Ethernet network at our site.

To answer the second question, “How much data travels between the two departments?”’, we need a rule
that looks like this:

ipfwadm -A both -a -S 172.16.3.0/24 -D 172.16.4.0/24 -b

231

Chapter 10. IP Accounting

or:
ipchains -A forward -s 172.16.3.0/24 -d 172.16.4.0/24 -b
or:

iptables —A FORWARD -s 172.16.3.0/24 -d 172.16.4.0/24
iptables -A FORWARD -s 172.16.4.0/24 -d 172.16.3.0/24

These rules will count all datagrams with a source address belonging to one of the department networks
and a destination address belonging to the other.

10.2.2. Accounting by Service Port

Okay, let’s suppose we also want a better idea of exactly what sort of traffic is being carried across our
PPP link. We might, for example, want to know how much of the link the FTP, smtp, and World Wide
Web services are consuming.

A script of rules to enable us to collect this information might look like:

#!/bin/sh

Collect FTP, smtp and www volume statistics for data carried on our
PPP link using ipfwadm

#

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 ftp ftp-data

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 smtp

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 www

or:

#!/bin/sh

Collect ftp, smtp and www volume statistics for data carried on our
PPP link using ipchains

#

ipchains -A input -i ppp0 -p tcp -s 0/0 ftp-data:ftp

ipchains —-A output —-i ppp0 -p tcp -d 0/0 ftp-data:ftp

ipchains -A input -i ppp0 -p tcp -s 0/0 smtp

ipchains —-A output —-i ppp0 -p tcp -d 0/0 smtp

ipchains —-A input -i ppp0 -p tcp -s 0/0 www

ipchains -A output -i ppp0 -p tcp -d 0/0 www

or:

#!/bin/sh

Collect ftp, smtp and www volume statistics for data carried on our
PPP link using iptables.

#

iptables —-A FORWARD -i pppO -m tcp -p tcp —--sport ftp-data:ftp
iptables -A FORWARD -o pppO -m tcp -p tcp —--dport ftp-data:ftp
iptables —-A FORWARD -i ppp0 -m tcp -p tcp —--sport smtp

232

Chapter 10. IP Accounting

iptables —-A FORWARD -o ppp0 -m tcp -p tcp —--dport smtp
iptables -A FORWARD -i pppO -m tcp -p tcp ——-sport www
iptables —-A FORWARD -o ppp0 -m tcp -p tcp —-—-dport www

There are a couple of interesting features to this configuration. Firstly, we’ve specified the protocol.
When we specify ports in our rules, we must also specify a protocol because TCP and UDP provide
separate sets of ports. Since all of these services are TCB-based, we’ve specified it as the protocol.
Secondly, we’ve specified the two services ftp and ftp-data in one command. ipfwadm allows you to
specify single ports, ranges of ports, or arbitrary lists of ports. The ipchains command allows either
single ports or ranges of ports, which is what we’ve used here. The syntax "ftp-data: ftp" means
"ports ftp-data (20) through ftp (21)," and is how we encode ranges of ports in both ipchains and
iptables. When you have a list of ports in an accounting rule, it means that any data received for any of
the ports in the list will cause the data to be added to that entry’s totals. Remembering that the FTP
service uses two ports, the command port and the data transfer port, we’ve added them together to total
the FTP traffic. Lastly, we’ve specified the source address as “0/0,” which is special notation that
matches all addresses and is required by both the ipfwadm and ipchains commands in order to specify
ports.

We can expand on the second point a little to give us a different view of the data on our link. Let’s now
imagine that we class FTP, SMTP, and World Wide Web traffic as essential traffic, and all other traffic as
nonessential. If we were interested in seeing the ratio of essential traffic to nonessential traffic, we could
do something like:

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 ftp ftp-data smtp www
ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 1:19 22:24 26:79 81:32767

If you have already examined your /etc/services file, you will see that the second rule covers all
ports except (ftp, ftp-data, smtp, and www).

How do we do this with the ipchains or iptables commands, since they allow only one argument in their
port specification? We can exploit user-defined chains in accounting just as easily as in firewall rules.
Consider the following approach:

ipchains -N a-essent

ipchains -N a-noness

ipchains —-A a-essent —-j ACCEPT

ipchains -A a-noness -j ACCEPT

ipchains -A forward -i ppp0 -p tcp -s 0/0 ftp-data:ftp -j a-essent
ipchains -A forward -i ppp0 -p tcp -s 0/0 smtp -j a-essent
ipchains -A forward -i ppp0 -p tcp -s 0/0 www —j a-essent

T T

ipchains -A forward -j a-noness

233

Chapter 10. IP Accounting

Here we create two user-defined chains, one called a—essent, where we capture accounting data for
essential services and another called a—noness, where we capture accounting data for nonessential
services. We then add rules to our forward chain that match our essential services and jump to the
a—essent chain, where we have just one rule that accepts all datagrams and counts them. The last rule
in our forward chain is a rule that jumps to our a-noness chain, where again we have just one rule that
accepts all datagrams and counts them. The rule that jumps to the a-noness chain will not be reached
by any of our essential services, as they will have been accepted in their own chain. Our tallies for
essential and nonessential services will therefore be available in the rules within those chains. This is just
one approach you could take; there are others. Our iptables implementation of the same approach would
look like:

iptables -N a-essent

iptables -N a-noness

iptables —-A a-essent -j ACCEPT

iptables -A a-noness —-j ACCEPT

iptables —A FORWARD -i ppp0 -m tcp —-p tcp —--sport ftp-data:ftp —-j a-essent
iptables —-A FORWARD -i ppp0 -m tcp -p tcp ——-sport smtp —-j a-essent
iptables —A FORWARD -i ppp0 -m tcp —-p tcp —-sport www —-j a-essent

iptables —-A FORWARD -Jj a-noness

This looks simple enough. Unfortunately, there is a small but unavoidable problem when trying to do
accounting by service type. You will remember that we discussed the role the MTU plays in TCP/IP
networking in an earlier chapter. The MTU defines the largest datagram that will be transmitted on a
network device. When a datagram is received by a router that is larger than the MTU of the interface that
needs to retransmit it, the router performs a trick called fragmentation. The router breaks the large
datagram into small pieces no longer than the MTU of the interface and then transmits these pieces. The
router builds new headers to put in front of each of these pieces, and these are what the remote machine
uses to reconstruct the original data. Unfortunately, during the fragmentation process the port is lost for
all but the first fragment. This means that the IP accounting can’t properly count fragmented datagrams.
It can reliably count only the first fragment, or unfragmented datagrams. There is a small trick permitted
by ipfwadm that ensures that while we won’t be able to know exactly what port the second and later
fragments were from, we can still count them. An early version of Linux accounting software assigned
the fragments a fake port number, OxFFFF, that we could count. To ensure that we capture the second
and later fragments, we could use a rule like:

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 OXFFFF

The IP chains implementation has a slightly more sophisticated solution, but the result is much the same.
If using the ipchains command we’d instead use:

ipchains -A forward -i ppp0 -p tcp -f
and with iptables we’d use:

iptables —-A FORWARD -i ppp0 -m tcp -p tecp -f

234

Chapter 10. IP Accounting

These won’t tell us what the original port for this data was, but at least we are able to see how much of
our data is fragments, and be able to account for the volume of traffic they consume.

In 2.2 kernels you can select a kernel compile-time option that negates this whole issue if your Linux
machine is acting as the single access point for a network. If you enable the IP: always defragment
option when you compile your kernel, all received datagrams will be reassembled by the Linux router
before routing and retransmission. This operation is performed before the firewall and accounting
software sees the datagram, and thus you will have no fragments to deal with. In 2.4 kernels you compile
and load the netfilter forward-fragment module.

10.2.3. Accounting of ICMP Datagrams

The ICMP protocol does not use service port numbers and is therefore a little bit more difficult to collect
details on. ICMP uses a number of different types of datagrams. Many of these are harmless and normal,
while others should only be seen under special circumstances. Sometimes people with too much time on
their hands attempt to maliciously disrupt the network access of a user by generating large numbers of
ICMP messages. This is commonly called ping flooding. While IP accounting cannot do anything to
prevent this problem (IP firewalling can help, though!) we can at least put accounting rules in place that
will show us if anybody has been trying.

ICMP doesn’t use ports as TCP and UDP do. Instead ICMP has ICMP message types. We can build rules
to account for each ICMP message type. To do this, we place the ICMP message and type number in
place of the port field in the ipfwadm accounting commands. We listed the ICMP message types in
Section 9.6.3.5,” so refer to it if you need to remember what they are.

An IP accounting rule to collect information about the volume of ping data that is being sent to you or
that you are generating might look like:

ipfwadm -A both -a -P icmp -S 0/0 8

ipfwadm -A both -a -P icmp -S 0/0 0

ipfwadm -A both -a -P icmp -S 0/0 Oxff

or, with ipchains:

ipchains -A forward -p icmp -s 0/0 8

ipchains -A forward -p icmp -s 0/0 O

ipchains -A forward -p icmp -s 0/0 -f

or, with iptables:

iptables —-A FORWARD -m icmp —-p icmp --sports echo-request

iptables —A FORWARD -m icmp —p icmp —-sports echo-reply
iptables -A FORWARD -m icmp -p icmp -f

235

Chapter 10. IP Accounting

The first rule collects information about the “ICMP Echo Request” datagrams (ping requests), and the
second rule collects information about the “ICMP Echo Reply” datagrams (ping replies). The third rule
collects information about ICMP datagram fragments. This is a trick similar to that described for
fragmented TCP and UDP datagrams.

If you specify source and/or destination addresses in your rules, you can keep track of where the pings
are coming from, such as whether they originate inside or outside your network. Once you’ve determined
where the rogue datagrams are coming from, you can decide whether you want to put firewall rules in
place to prevent them or take some other action, such as contacting the owner of the offending network
to advise them of the problem, or perhaps even legal action if the problem is a malicious act.

10.2.4. Accounting by Protocol

Let’s now imagine that we are interested in knowing how much of the traffic on our link is TCP, UDP,
and ICMP. We would use rules like the following:

ipfwadm -A both -a -W ppp0 -P tcp -D 0/0
ipfwadm -A both -a -W ppp0 -P udp -D 0/0
ipfwadm -A both -a -W ppp0 -P icmp -D 0/0

or:
ipchains -A forward -i ppp0O -p tcp -d 0/0

ipchains -A forward -i ppp0 —-p udp -d 0/0
ipchains -A forward -i ppp0 -p icmp -d 0/0

or:

iptables -A FORWARD -i ppp0 -m tcp -p tcp

iptables —-A FORWARD -o ppp0 -m tcp -p tcp

iptables -A FORWARD -i ppp0 -m udp -p udp

iptables —-A FORWARD -o ppp0 -m udp -p udp

iptables —-A FORWARD -i ppp0 -m icmp -p icmp
iptables —-A FORWARD -o ppp0 -m icmp -p icmp

With these rules in place, all of the traffic flowing across the ppp0 interface will be analyzed to
determine whether it is TCP, UDP, or IMCP traffic, and the appropriate counters will be updated for
each. The iptables example splits incoming flow from outgoing flow as its syntax demands it.

10.3. Using IP Accounting Results

It is all very well to be collecting this information, but how do we actually get to see it? To view the
collected accounting data and the configured accounting rules, we use our firewall configuration
commands, asking them to list our rules. The packet and byte counters for each of our rules are listed in
the output.

236

Chapter 10. IP Accounting

The ipfwadm, ipchains, and iptables commands differ in how accounting data is handled, so we will
treat them independently.

10.3.1. Listing Accounting Data with ipfwadm

The most basic means of listing our accounting data with the ipfwadm command is to use it like this:

ipfwadm -A -1
IP accounting rules

pkts bytes dir prot source destination ports
9833 2345K i/o all 172.16.3.0/24 anywhere n/a
56527 33M i/0 all 172.16.4.0/24 anywhere n/a

This will tell us the number of packets sent in each direction. If we use the extended output format with
the —e option (not shown here because the output is too wide for the page), we are also supplied the
options and applicable interface names. Most of the fields in the output will be self-explanatory, but the
following may not:

dir
The direction in which the rule applies. Expected values here are in, out, or i /o, meaning both
ways.
prot
The protocols to which the rule applies.
opt
A coded form of the options we use when invoking ipfwadm.
ifname

The name of the interface to which the rule applies.

ifaddress

The address of the interface to which the rule applies.

By default, ipfwadm displays the packet and byte counts in a shortened form, rounded to the nearest
thousand (K) or million (M). We can ask it to display the collected data in exact units by using the
expanded option as follows:

ipfwadm -A -1 -e -x

237

Chapter 10. IP Accounting

10.3.2. Listing Accounting Data with ipchains

The ipchains command will not display our accounting data (packet and byte counters) unless we supply
it the —v argument. The simplest means of listing our accounting data with the ipchains is to use it like
this:

ipchains -L -v

Again, just as with ipfwadm, we can display the packet and byte counters in units by using the expanded
output mode. The ipchains uses the —x argument for this:

ipchains -L -v —x

10.3.3. Listing Accounting Data with iptables

The iptables command behaves very similarly to the ipchains command. Again, we must use the -v
when listing tour rules to see the accounting counters. To list our accounting data, we would use:

iptables -L -v

Just as for the ipchains command, you can use the —x argument to show the output in expanded format
with unit figures.

10.4. Resetting the Counters

The IP accounting counters will overflow if you leave them long enough. If they overflow, you will have
difficulty determining the value they actually represent. To avoid this problem, you should read the
accounting data periodically, record it, and then reset the counters back to zero to begin collecting
accounting information for the next accounting interval.

The ipfwadm and ipchains commands provide you with a means of doing this quite simply:
ipfwadm -A -z

or:

ipchains -2z

or:

iptables -2

238

Chapter 10. IP Accounting

You can even combine the list and zeroing actions together to ensure that no accounting data is lost in
between:

ipfwadm -A -1 -z
or:

ipchains -L -Z
or:

iptables -L -Z -v

These commands will first list the accounting data and then immediately zero the counters and begin
counting again. If you are interested in collecting and using this information regularly, you would
probably want to put this command into a script that recorded the output and stored it somewhere, and
execute the script periodically using the cron command.

10.5. Flushing the Ruleset

One last command that might be useful allows you to flush all the IP accounting rules you have
configured. This is most useful when you want to radically alter your ruleset without rebooting the
machine.

The - £ argument in combination with the ipfwadm command will flush all of the rules of the type you
specify. ipchains supports the —F argument, which does the same:

ipfwadm -A -f

or:

ipchains -F

or:

iptables -F

This flushes all of your configured IP accounting rules, removing them all and saving you having to
remove each of them individually. Note that flushing the rules with ipchains does not cause any
user-defined chains to be removed, only the rules within them.

10.6. Passive Collection of Accounting Data

One last trick you might like to consider: if your Linux machine is connected to an Ethernet, you can
apply accounting rules to all of the data from the segment, not only that which it is transmitted by or
destined for it. Your machine will passively listen to all of the data on the segment and count it.

239

Chapter 10. IP Accounting

You should first turn IP forwarding off on your Linux machine so that it doesn’t try to route the
datagrams it receives.' In the 2.0.36 and 2.2 kernels, this is a matter of:

echo 0 >/proc/sys/net/ipv4/ip_forward

You should then enable promiscuous mode on your Ethernet interface using the ifconfig command. Now
you can establish accounting rules that allow you to collect information about the datagrams flowing
across your Ethernet without involving your Linux in the route at all.

Notes

1. This isn’t a good thing to do if your Linux machine serves as a router. If you disable IP forwarding, it
will cease to route! Do this only on a machine with a single physical network interface.

240

Chapter 11. IP Masquerade and Network
Address Translation

You don’t have to have a good memory to remember a time when only large organizations could afford
to have a number of computers networked together by a LAN. Today network technology has dropped so
much in price that two things have happened. First, LANs are now commonplace, even in many
household environments. Certainly many Linux users will have two or more computers connected by
some Ethernet. Second, network resources, particularly IP addresses, are now a scarce resource and
while they used to be free, they are now being bought and sold.

Most people with a LAN will probably also want an Internet connection that every computer on the LAN
can use. The IP routing rules are quite strict in how they deal with this situation. Traditional solutions to
this problem would have involved requesting an IP network address, perhaps a class C address for small
sites, assigning each host on the LAN an address from this network and using a router to connect the
LAN to the Internet.

In a commercialized Internet environment, this is quite an expensive proposition. First, you’d be required
to pay for the network address that is assigned to you. Second, you’d probably have to pay your Internet
Service Provider for the privilege of having a suitable route to your network put in place so that the rest
of the Internet knows how to reach you. This might still be practical for companies, but domestic
installations don’t usually justify the cost.

Fortunately, Linux provides an answer to this dilemma. This answer involves a component of a group of
advanced networking features called Network Address Translation (NAT). NAT describes the process of
modifying the network addresses contained with datagram headers while they are in transit. This might
sound odd at first, but we’ll show that it is ideal for solving the problem we’ve just described and many
have encountered. IP masquerade is the name given to one type of network address translation that
allows all of the hosts on a private network to use the Internet at the price of a single IP address.

IP masquerading allows you to use a private (reserved) IP network address on your LAN and have your
Linux-based router perform some clever, real-time translation of IP addresses and ports. When it receives
a datagram from a computer on the LAN, it takes note of the type of datagram it is, “TCP,” “UDP,”
“ICMP;” etc., and modifies the datagram so that it looks like it was generated by the router machine itself
(and remembers that it has done so). It then transmits the datagram onto the Internet with its single
connected IP address. When the destination host receives this datagram, it believes the datagram has
come from the routing host and sends any reply datagrams back to that address. When the Linux
masquerade router receives a datagram from its Internet connection, it looks in its table of established
masqueraded connections to see if this datagram actually belongs to a computer on the LAN, and if it
does, it reverses the modification it did on the forward path and transmits the datagram to the LAN
computer.

A simple example is illustrated in Figure 11-1.

241

Chapter 11. IP Masquerade and Network Address Translation

Figure 11-1. A typical IP masquerade configuration

1= 1, 10 =525 2.0
1= 1@ 12 .—l
== el . tho =
et ezt B mim F

PP | Masquerade L3N

Rovuter 1]
Masqueraded request Crigna request
Fron: T31023 1 pot 1085 From: 192188, 13 pat 1234
Tandated by masquerade rouler at
e[k |
COrigna redy Cemasqueraded redy
Ta 2. 0.2 1 port 1035 T 192 108 1.3 pat 124

We have a small Ethernet network using one of the reserved network addresses. The network has a
Linux-based masquerade router providing access to the Internet. One of the workstations on the network
(192.168.1.3) wishes to establish a connection to the remote host 209.1.106.178 on port 8888. The
workstation routes its datagram to the masquerade router, which identifies this connection request as
requiring masquerade services. It accepts the datagram and allocates a port number to use (1035),
substitutes its own IP address and port number for those of the originating host, and transmits the
datagram to the destination host. The destination host believes it has received a connection request from
the Linux masquerade host and generates a reply datagram. The masquerade host, upon receiving this
datagram, finds the association in its masquerade table and reverses the substution it performed on the
outgoing datagram. It then transmits the reply datagram to the originating host.

The local host believes it is speaking directly to the remote host. The remote host knows nothing about
the local host at all and believes it has received a connection from the Linux masquerade host. The Linux
masquerade host knows these two hosts are speaking to each other, and on what ports, and performs the
address and port translations necessary to allow communication.

This might all seem a little confusing, and it can be, but it works and is really quite simple to configure.
So don’t worry if you don’t understand all the details yet.

11.1. Side Effects and Fringe Benefits

The IP masquerade facility comes with its own set of side effects, some of which are useful and some of
which might become bothersome.

None of the hosts on the supported network behind the masquerade router are ever directly seen;

242

Chapter 11. IP Masquerade and Network Address Translation

consequently, you need only one valid and routable IP address to allow all hosts to make network
connections out onto the Internet. This has a downside; none of those hosts are visible from the Internet
and you can’t directly connect to them from the Internet; the only host visible on a masqueraded network
is the masquerade machine itself. This is important when you consider services such as mail or FTP. It
helps determine what services should be provided by the masquerade host and what services it should
proxy or otherwise treat specially.

Second, because none of the masqueraded hosts are visible, they are relatively protected from attacks
from outside; this could simplify or even remove the need for firewall configuration on the masquerade
host. You shouldn’t rely too heavily on this, though. Your whole network will be only as safe as your
masquerade host, so you should use firewall to protect it if security is a concern.

Third, IP masquerade will have some impact on the performance of your networking. In typical
configurations this will probably be barely measurable. If you have large numbers of active masquerade
sessions, though, you may find that the processing required at the masquerade machine begins to impact
your network throughput. IP masquerade must do a good deal of work for each datagram compared to
the process of conventional routing. That 386SX16 machine you have been planning on using as a
masquerade machine supporting a dial-up link to the Internet might be fine, but don’t expect too much if
you decide you want to use it as a router in your corporate network at Ethernet speeds.

Last, some network services just won’t work through masquerade, or at least not without a lot of help.
Typically, these are services that rely on incoming sessions to work, such as some types of Direct
Communications Channels (DCC), features in IRC, or certain types of video and audio multicasting
services. Some of these services have specially developed kernel modules to provide solutions for these,
and we’ll talk about those in a moment. For others, it is possible that you will find no support, so be
aware,it won’t be suitable in all situations.

11.2. Configuring the Kernel for IP Masquerade

To use the IP masquerade facility, your kernel must be compiled with masquerade support. You must
select the following options when configuring a 2.2 series kernel:

Networking options -—-—->
[«*] Network firewalls

[*] TCP/IP networking

[*] IP: firewalling

[*] IP: masquerading

*

*
—-—— Protocol-specific masquerading support will be built as modules.
[#] IP: ipautofw masg support
[*] IP: ICMP masquerading

Note that some of the masquerade support is available only as a kernel module. This means that you must
ensure that you “make modules” in addition to the usual “make zImage” when building your kernel.

243

Chapter 11. IP Masquerade and Network Address Translation

The 2.4 series kernels no longer offer IP masquerade support as a kernel compile time option. Instead,
you should select the network packet filtering option:

Networking options ———>
[M] Network packet filtering (replaces ipchains)

In the 2.2 series kernels, a number of protocol-specific helper modules are created during kernel
compilation. Some protocols begin with an outgoing request on one port, and then expect an incoming
connection on another. Normally these cannot be masqueraded, as there is no way of associating the
second connection with the first without peering inside the protocols themselves. The helper modules do
just that; they actually look inside the datagrams and allow masquerading to work for supported
protocols that otherwise would be impossible to masquerade. The supported protocols are:

Module Protocol
ip_masq_ftp FTP

ip_masq_irc IRC
ip_masq_raudio RealAudio
ip_masq_cuseeme CU-See-Me
ip_masq_vdolive For VDO Live
ip_masq_quake IdSoftware’s Quake

You must load these modules manually using the insmod command to implement them. Note that these
modules cannot be loaded using the kerneld daemon. Each of the modules takes an argument specifying
what ports it will listen on. For the RealAudio™ module you might use:'

insmod ip_masq raudio.o ports=7070,7071,7072

The ports you need to specify depend on the protocol. An IP masquerade mini-HOWTO written by
Ambrose Au explains more about the IP masquerade modules and how to configure them.?

The netfilter package includes modules that perform similar functions. For example, to provide
connection tracking of FTP sessions, you’d load and use the ip_conntrack_ ftp and ip_nat_ ftp.o
modules.

11.3. Configuring IP Masquerade

If you’ve already read the firewall and accounting chapters, it probably comes as no surprise that the
ipfwadm, ipchains, and iptables commands are used to configure the IP masquerade rules as well.

Masquerade rules are a special class of filtering rule. You can masquerade only datagrams that are
received on one interface that will be routed to another interface. To configure a masquerade rule you
construct a rule very similar to a firewall forwarding rule, but with special options that tell the kernel to
masquerade the datagram. The ipfwadm command uses the -m option, ipchains uses -3 MASQ, and

244

Chapter 11. IP Masquerade and Network Address Translation

iptables uses -j MASQUERADE to indicate that datagrams matching the rule specification should be
masqueraded.

Let’s look at an example. A computing science student at Groucho Marx University has a number of
computers at home internetworked onto a small Ethernet-based local area network. She has chosen to use
one of the reserved private Internet network addresses for her network. She shares her accomodation
with other students, all of whom have an interest in using the Internet. Because student living conditions
are very frugal, they cannot afford to use a permanent Internet connection, so instead they use a simple
dial-up PPP Internet connection. They would all like to be able to share the connection to chat on IRC,
surf the Web, and retrieve files by FTP directly to each of their computers—IP masquerade is the answer.

The student first configures a Linux machine to support the dial-up link and to act as a router for the
LAN. The IP address she is assigned when she dials up isn’t important. She configures the Linux router
with IP masquerade and uses one of the private network addresses for her LAN: 192.168.1.0. She
ensures that each of the hosts on the LAN has a default route pointing at the Linux router.

The following ipfwadm commands are all that are required to make masquerading work in her
configuration:

ipfwadm -F -p deny
ipfwadm -F -a accept -m -S 192.168.1.0/24 -D 0/0

or with ipchains:

ipchains -P forward -j deny
ipchains -A forward -s 192.168.1.0/24 -d 0/0 -j MASQ

or with iptables:

iptables -t nat -P POSTROUTING DROP
iptables -t nat —-A POSTROUTING -o ppp0O —-j MASQUERADE

Now whenever any of the LAN hosts try to connect to a service on a remote host, their datagrams will be
automatically masqueraded by the Linux masquerade router. The first rule in each example prevents the
Linux machine from routing any other datagrams and also adds some security.

To list the masquerade rules you have created, use the -1 argument to the ipfwadm command, as we
described in earlier while discussing firewalls.

To list the rule we created earlier we use:
ipfwadm -F -1 -e

which should display something like:

ipfwadm -F -1 -e

IP firewall forward rules, default policy: accept
pkts bytes type prot opt tosa tosx ifname ifaddress

245

Chapter 11. IP Masquerade and Network Address Translation

0 0 acc/m all --—-—- OxFF 0x00 any any

The “/m” in the output indicates this is a masquerade rule.

To list the masquerade rules with the ipchains command, use the -L argument. If we list the rule we
created earlier with ipchains, the output will look like:

ipchains -L

Chain input (policy ACCEPT) :

Chain forward (policy ACCEPT) :

target prot opt source destination ports
MASQ all —-—————-— 192.168.1.0/24 anywhere n/a

Chain output (policy ACCEPT) :

Any rules with a target of MASQ are masquerade rules.

Finally, to list the rules using iptables you need to use:

iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination
Chain POSTROUTING (policy DROP)

target prot opt source destination

MASQUERADE all -- anywhere anywhere MASQUERADE

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Again, masquerade rules appear with a target of MASQUERADE.

11.3.1. Setting Timing Parameters for IP Masquerade

When each new connection is established, the IP masquerade software creates an association in memory
between each of the hosts involved in the connection. You can view these associations at any time by
looking at the /proc/net/ip_masquerade file. These associations will timeout after a period of
inactivity, though.

You can set the timeout values using the ipfwadm command. The general syntax for this is:

ipfwadm -M -s <tcp> <tcpfin> <udp>

and for the ipchains command it is:

ipchains -M -S <tcp> <tcpfin> <udp>

246

Chapter 11. IP Masquerade and Network Address Translation

The iptables implementation uses much longer default timers and does not allow you to set them.

Each of these values represents a timer used by the IP masquerade software and are in units of seconds.
The following table summarizes the timers and their meanings:

Name Description

tep
[CP

ion
ime-
ut.
How
ong

247

Chapter 11. IP Masquerade and Network Address Translation

Name

Description

tepfin

¢
F:

1

\

1

1

i

{

i
TCP
¢on-
nec-
tion
has
been
dis-
gon-
1

1ected.

248

Chapter 11. IP Masquerade and Network Address Translation

Name Description

udp
UDP
es-
ion
ime-
ut.
How
ong

'—('—t-—-»—-»—hc—»_mnmmz—»»—hz-r‘»—-s'—e'—(z—r.'-&n;—(mr—mhe»mm;—i
o
=.
=

noved.

11.4. Handling Name Server Lookups

Handling domain name server lookups from the hosts on the LAN with IP masquerading has always
presented a problem. There are two ways of accomodating DNS in a masquerade environment. You can
tell each of the hosts that they use the same DNS that the Linux router machine does, and let IP
masquerade do its magic on their DNS requests. Alternatively, you can run a caching name server on the
Linux machine and have each of the hosts on the LAN use the Linux machine as their DNS. Although a

249

Chapter 11. IP Masquerade and Network Address Translation

more aggressive action, this is probably the better option because it reduces the volume of DNS traffic
travelling on the Internet link and will be marginally faster for most requests, since they’ll be served from
the cache. The downside to this configuration is that it is more complex. Section 6.3.4,” in Chapter 6,
describes how to configure a caching name server.

11.5. More About Network Address Translation

The netfilter software is capable of many different types of Network Address Translation. I[P Masquerade
is one simple application of it.

It is possible, for example, to build NAT rules that translate only certain addresses or ranges of addresses
and leave all others untouched, or to translate addresses into pools of addresses rather than just a single
address, as masquerade does. You can in fact use the iptables command to generate NAT rules that map
just about anything, with combinations of matches using any of the standard attributes, such as source
address, destination address, protocol type, port number, etc.

Translating the Source Address of a datagram is referred to as “Source NAT,” or SNAT, in the netfilter
documentation. Translating the Destination Address of a datagram is known as “Destination NAT,” or
DNAT. Translating the TCP or UDP port is known by the term REDIRECT. SNAT, DNAT, and REDIRECT
are targets that you may use with the iptables command to build more complex and sophisticated rules.

The topic of Network Address Translation and its uses warrants at least a whole chapter of its own.?
Unfortunately we don’t have the space in this book to cover it in any greater depth. You should read the
IPTABLES-HOWTO for more information, if you’re interested in discovering more about how you
might use Network Address Translation.

Notes

1. RealAudio is a trademark of the Progressive Networks Corporation.
2. You can contact Ambrose at ambrose @ writeme.com.

3. ... and perhaps even a whole book!

250

Chapter 12. ImportantNetwork Features

After successfully setting up IP and the resolver, you then must look at the services you want to provide
over the network. This chapter covers the configuration of a few simple network applications, including
the inetd server and the programs from the rlogin family. We’ll also deal briefly with the Remote
Procedure Call interface, upon which services like the Network File System (NFS) and the Network
Information System (NIS) are based. The configuration of NFS and NIS, however, is more complex and
are described in separate chapters, as are electronic mail and network news.

Of course, we can’t cover all network applications in this book. If you want to install one that’s not
discussed here, like talk, gopher, or http, please refer to the manual pages of the server for details.

12.1. The inetd Super Server

Programs that provide application services via the network are called network daemons. A daemon is a
program that opens a port, most commonly a well-known service port, and waits for incoming
connections on it. If one occurs, the daemon creates a child process that accepts the connection, while the
parent continues to listen for further requests. This mechanism works well, but has a few disadvantages;
at least one instance of every possible service you wish to provide must be active in memory at all times.
In addition, the software routines that do the listening and port handling must be replicated in every
network daemon.

To overcome these inefficiencies, most Unix installations run a special network daemon, what you might
consider a “super server.” This daemon creates sockets on behalf of a number of services and listens on
all of them simultaneously. When an incoming connection is received on any of these sockets, the super
server accepts the connection and spawns the server specified for this port, passing the socket across to
the child to manage. The server then returns to listening.

The most common super server is called inetd, the Internet Daemon. It is started at system boot time and
takes the list of services it is to manage from a startup file named /etc/inetd.conf. In addition to
those servers, there are a number of trivial services performed by inetd itself called internal services.
They include chargen, which simply generates a string of characters, and daytime, which returns the
system’s idea of the time of day.

An entry in this file consists of a single line made up of the following fields:

service type protocol wait user server cmdline

Each of the fields is described in the following list:

251

Chapter 12. ImportantNetwork Features

service

Gives the service name. The service name has to be translated to a port number by looking it up in
the /etc/services file. This file will be described later in this chapter in the section Section 12.3.”

type

Specifies a socket type, either stream (for connection-oriented protocols) or dgram (for datagram
protocols). TCP-based services should therefore always use stream, while UDP-based services
should always use dgram.

protocol

Names the transport protocol used by the service. This must be a valid protocol name found in the
protocols file, explained later.

wait

This option applies only to dgram sockets. It can be either wait or nowait. If wait is specified, inetd
executes only one server for the specified port at any time. Otherwise, it immediately continues to
listen on the port after executing the server.

This is useful for “single-threaded” servers that read all incoming datagrams until no more arrive,
and then exit. Most RPC servers are of this type and should therefore specify wait. The opposite
type, “multi-threaded” servers, allow an unlimited number of instances to run concurrently. These
servers should specify nowait.

stream sockets should always use nowait.

user

This is the login ID of the user who will own the process when it is executing. This will frequently
be the root user, but some services may use different accounts. It is a very good idea to apply the
principle of least privilege here, which states that you shouldn’t run a command under a privileged
account if the program doesn’t require this for proper functioning. For example, the NNTP news
server runs as news, while services that may pose a security risk (such as tftp or finger) are often
run as nobody.

server
Gives the full pathname of the server program to be executed. Internal services are marked by the
keyword internal.

cmdline

This is the command line to be passed to the server. It starts with the name of the server to be
executed and can include any arguments that need to be passed to it. If you are using the TCP
wrapper, you specify the full pathname to the server here. If not, then you just specify the server
name as you’d like it to appear in a process list. We’ll talk about the TCP wrapper shortly.

This field is empty for internal services.

252

Chapter 12. ImportantNetwork Features

A sample inetd.conf file is shown in Example 12-1. The finger service is commented out so that it is
not available. This is often done for security reasons, because it can be used by attackers to obtain names
and other details of users on your system.

Example 12-1. A Sample /etc/inetd.conf File

#

inetd services

ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -1

telnet stream tcp nowait root /usr/sbin/telnetd in.telnetd -b/etc/issue
#finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd /boot/diskless
#login stream tcp nowait root /usr/sbin/rlogind in.rlogind

#shell stream tcp nowait root /usr/sbin/rshd in.rshd

fexec stream tcp nowait root /usr/sbin/rexecd in.rexecd

#

inetd internal services

#

daytime stream tcp nowait root internal
daytime dgram udp nowait root internal

time stream tcp nowait root internal
time dgram udp nowait root internal
echo stream tcp nowait root internal
echo dgram udp nowait root internal

discard stream tcp nowait root internal
discard dgram udp nowait root internal
chargen stream tcp nowait root internal
chargen dgram udp nowait root internal

The tftp daemon is shown commented out as well. tftp implements the Trivial File Transfer Protocol
(TFTP), which allows someone to transfer any world-readable files from your system without password
checking. This is especially harmful with the /etc/passwd file, and even more so when you don’t use
shadow passwords.

TFTP is commonly used by diskless clients and Xterminals to download their code from a boot server. If
you need to run tftpd for this reason, make sure to limit its scope to those directories from which clients
will retrieve files; you will need to add those directory names to tftpd’s command line. This is shown in
the second tftp line in the example.

12.2. The tcpd Access Control Facility

Since opening a computer to network access involves many security risks, applications are designed to
guard against several types of attacks. Some security features, however, may be flawed (most drastically
demonstrated by the RTM Internet worm, which exploited a hole in a number of programs, including old

253

Chapter 12. ImportantNetwork Features

versions of the sendmail mail daemon), or do not distinguish between secure hosts from which requests
for a particular service will be accepted and insecure hosts whose requests should be rejected. We’ve
already briefly discussed the finger and tftp services. Network Administrator would want to limit access
to these services to “trusted hosts” only, which is impossible with the usual setup, for which inetd
provides this service either to all clients or not at all.

A useful tool for managing host-specific access is tepd, often called the daemon “wrapper.”! For TCP
services you want to monitor or protect, it is invoked instead of the server program. tepd checks if the
remote host is allowed to use that service, and only if this succeeds will it execute the real server
program. tepd also logs the request to the syslog daemon. Note that this does not work with UDP-based
services.

For example, to wrap the finger daemon, you have to change the corresponding line in inetd.conf
from this:

unwrapped finger daemon
finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

to this:

wrap finger daemon
finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

Without adding any access control, this will appear to the client as the usual finger setup, except that any
requests are logged to syslog’s auth facility.

Two files called /etc/hosts.allowand /etc/hosts.deny implement access control. They contain
entries that allow and deny access to certain services and hosts. When tcpd handles a request for a
service such as finger from a client host named biff.foobar.com, it scans hosts.allow and
hosts.deny (in this order) for an entry matching both the service and client host. If a matching entry is
found in hosts.allow, access is granted and tcpd doesn’t consult the hosts. deny file. If no match is
found in the hosts.allow file, but a match is found in hosts. deny, the request is rejected by closing
down the connection. The request is accepted if no match is found at all.

Entries in the access files look like this:

servicelist: hostlist [:shellcmd]

servicelist is alist of service names from /etc/services, or the keyword ALL. To match all
services except finger and tftp, use ALL EXCEPT finger, tftp.

254

Chapter 12. ImportantNetwork Features

hostlist is alist of hostnames, IP addresses, or the keywords ALL, LOCAL, UNKNOWN or
PARANOID. ALL matches any host, while LOCAL matches hostnames that don’t contain a dot.”
UNKNOWN matches any hosts whose name or address lookup failed. PARANOID matches any host
whose hostname does not resolve back to its IP address.> A name starting with a dot matches all hosts
whose domain is equal to this name. For example, .foobar.com matches biff.foobar.com, but not
nurks.fredsville.com. A pattern that ends with a dot matches any host whose IP address begins with the
supplied pattern, so 172.16. matches 172.16.32.0, but not 172.15.9.1. A pattern of the form
n.n.n.n/m.m.m.mis treated as an IP address and network mask, so we could specify our previous
example as 172.16.0.0/255.255.0.0 instead. Lastly, any pattern beginning with a “/” character allows you
to specify a file that is presumed to contain a list of hostname or IP address patterns, any of which are
allowed to match. So a pattern that looked like /var/access/trustedhosts would cause the tcpd daemon to
read that file, testing if any of the lines in it matched the connecting host.

To deny access to the finger and tftp services to all but the local hosts, put the following in
/etc/hosts.deny and leave /etc/hosts.allow empty

in.tftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd field may contain a shell command to be invoked when the entry is matched.
This is useful to set up traps that may expose potential attackers. The following example creates a log file
listing the user and host connecting, and if the host is not vlager.vbrew.com it will append the output of
a finger to that host:

in.ftpd: ALL EXCEPT LOCAL, .vbrew.com : \
echo "request from %d@%h: >> /var/log/finger.log; \
if [%h != "vlager.vbrew.com:"]; then \
finger -1 @%h >> /var/log/finger.log \
fi

The %h and %d arguments are expanded by tepd to the client hostname and service name, respectively.
Please refer to the hosts_access (5) manual page for details.

12.3. The Services and Protocols Files

The port numbers on which certain “standard” services are offered are defined in the Assigned Numbers
RFC. To enable server and client programs to convert service names to these numbers, at least part of the
list is kept on each host; it is stored in a file called /etc/services. An entry is made up like this:

service port/protocol [aliases]

255

Chapter 12. ImportantNetwork Features

Here, service specifies the service name, port defines the port the service is offered on, and
protocol defines which transport protocol is used. Commonly, the latter field is either udp or tcp. Itis
possible for a service to be offered for more than one protocol, as well as offering different services on
the same port as long as the protocols are different. The aliases field allows you to specify alternative
names for the same service.

Usually, you don’t have to change the services file that comes along with the network software on your
Linux system. Nevertheless, we give a small excerpt from that file in Example 12-2.

Example 12-2. A Sample /etc/services File

The services file:

#

well-known services

echo 7/tcp # Echo

echo 7/udp #

discard 9/tcp sink null # Discard

discard 9/udp sink null #

daytime 13/tcp # Daytime

daytime 13/udp #

chargen 19/tcp ttytst source # Character Generator

chargen 19/udp ttytst source #

ftp-data 20/tcp # File Transfer Protocol (Data)
ftp 21/tcp # File Transfer Protocol (Control)
telnet 23/tcp # Virtual Terminal Protocol

smtp 25/tcp # Simple Mail Transfer Protocol
nntp 119/tcp readnews # Network News Transfer Protocol
#

UNIX services

exec 512/tcp # BSD rexecd

biff 512/udp comsat # mail notification

login 513/tcp # remote login

who 513/udp whod # remote who and uptime

shell 514/tcp cmd # remote command, no passwd used
syslog 514 /udp # remote system logging

printer 515/tcp spooler # remote print spooling

route 520/udp router routed # routing information protocol

Note that the echo service is offered on port 7 for both TCP and UDP, and that port 512 is used for two
different services: remote execution (rexec) using TCP, and the COMSAT daemon, which notifies users
of new mail, over UDP (see xbiff(1x)).

Like the services file, the networking library needs a way to translate protocol names—for example,
those used in the services file—to protocol numbers understood by the IP layer on other hosts. This is
done by looking up the name in the /etc/protocols file. It contains one entry per line, each
containing a protocol name, and the associated number. Having to touch this file is even more unlikely
than having to meddle with /etc/services. A sample file is given in Example 12-3.

256

Chapter 12. ImportantNetwork Features

Example 12-3. A Sample /etc/protocols File

#

Internet (IP) protocols

#

ip 0 Ip # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # internet group multicast protocol

tcp 6 TCP # transmission control protocol

udp 17 UDP # user datagram protocol

raw 255 RAW # RAW IP interface

12.4. Remote Procedure Call

The general mechanism for client-server applications is provided by the Remote Procedure Call (RPC)
package. RPC was developed by Sun Microsystems and is a collection of tools and library functions.
Important applications built on top of RPC are NIS, the Network Information System (described in
Chapter 13), and NFS, the Network File System (described in Chapter 14), which are both described in
this book.

An RPC server consists of a collection of procedures that a client can call by sending an RPC request to
the server along with the procedure parameters. The server will invoke the indicated procedure on behalf
of the client, handing back the return value, if there is any. In order to be machine-independent, all data
exchanged between client and server is converted to the External Data Representation format (XDR) by
the sender, and converted back to the machine-local representation by the receiver. RPC relies on
standard UDP and TCP sockets to transport the XDR formatted data to the remote host. Sun has
graciously placed RPC in the public domain; it is described in a series of RFCs.

Sometimes improvements to an RPC application introduce incompatible changes in the procedure call
interface. Of course, simply changing the server would crash all applications that still expect the original
behavior. Therefore, RPC programs have version numbers assigned to them, usually starting with 1, and
with each new version of the RPC interface, this counter will be bumped up. Often, a server may offer
several versions simultaneously; clients then indicate by the version number in their requests which
implementation of the service they want to use.

The communication between RPC servers and clients is somewhat peculiar. An RPC server offers one or
more collections of procedures; each set is called a program and is uniquely identified by a program
number. A list that maps service names to program numbers is usually kept in /etc/rpc, an excerpt of
which is shown in Example 12-4.

Example 12-4. A Sample /etc/rpc File

#
/etc/rpc - miscellaneous RPC-based services
#

257

Chapter 12. ImportantNetwork Features

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers

nfs 100003 nfsprog

ypserv 100004 vypprog

mountd 100005 mount showmount
ypbind 100007

walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
bootparam 100026

ypupdated 100028 ypupdate

In TCP/IP networks, the authors of RPC faced the problem of mapping program numbers to generic
network services. They designed each server to provide both a TCP and a UDP port for each program
and each version. Generally, RPC applications use UDP when sending data, and fall back to TCP only
when the data to be transferred doesn’t fit into a single UDP datagram.

Of course, client programs need to find out to which port a program number maps. Using a configuration
file for this would be too unflexible; since RPC applications don’t use reserved ports, there’s no
guarantee that a port originally meant to be used by our database application hasn’t been taken by some
other process. Therefore, RPC applications pick any port they can get and register it with a special
program called the portmapper daemon. The portmapper acts as a service broker for all RPC servers
running on its machine. A client that wishes to contact a service with a given program number first
queries the portmapper on the server’s host, which returns the TCP and UDP port numbers the service
can be reached at.

This method introduces a single point of failure, much like the inetd daemon does for the standard
Berkeley services. However, this case is even a little worse because when the portmapper dies, all RPC
port information is lost; this usually means you have to restart all RPC servers manually or reboot the
entire machine.

On Linux, the portmapper is called /sbin/portmap, or sometimes /usr/sbin/rpc.portmap. Other
than making sure it is started from your network boot scripts, the portmapper doesn’t require any
configuration.

12.5. Configuring Remote Loginand Execution

It’s often very useful to execute a command on a remote host and have input or output from that
command be read from, or written to, a network connection.

The traditional commands used for executing commands on remote hosts are rlogin, rsh and rcp. We
saw an example of the rlogin command in Chapter 1 in the section Section 1.2.1.” We briefly discussed
the security issues associated with it in Section 1.5.1” and suggested ssh as a replacement. The ssh
package provides replacements called slogin, ssh, and scp.

258

Chapter 12. ImportantNetwork Features

Each of these commands spawns a shell on the remote host and allows the user to execute commands. Of
course, the client needs to have an account on the remote host where the command is to be executed.
Thus, all these commands use an authentication process. The r commands use a simple username and
password exchange between the hosts with no encryption, so anyone listening could easily intercept the
passwords. The ssh command suite provides a higher level of security: it uses a technique called Public
Key Cryptography, which provides authentication and encryption between the hosts to ensure that
neither passwords nor session data are easily intercepted by other hosts.

It is possible to relax authentication checks for certain users even further. For instance, if you frequently
have to log into other machines on your LAN, you might want to be admitted without having to type
your password every time. This was always possible with the » commands, but the ssh suite allows you
to do this a little more easily. It’s still not a great idea because it means that if an account on one machine
is breached, access can be gained to all other accounts that user has configured for password-less login,
but it is very convenient and people will use it.

Let’s talk about removing the » commands and getting ssh to work instead.

12.5.1. Disabling the r; Commands

Start by removing the r commands if they’re installed. The easiest way to disable the old r commands is
to comment out (or remove) their entries in the /etc/inetd. conf file. The relevant entries will look
something like this:

Shell, login, exec and talk are BSD protocols.

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind
exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd

You can comment them by placing a # character at the start of each line, or delete the lines completely.
Remember, you need to restart the inetd daemon for this change to take effect. Ideally, you should
remove the daemon programs themselves, too.

12.5.2. Installing and Configuring ssh

OpenSSH is a free version of the ssh suite of programs; the Linux port can be found at
http://violet.ibs.com.au/openssh